

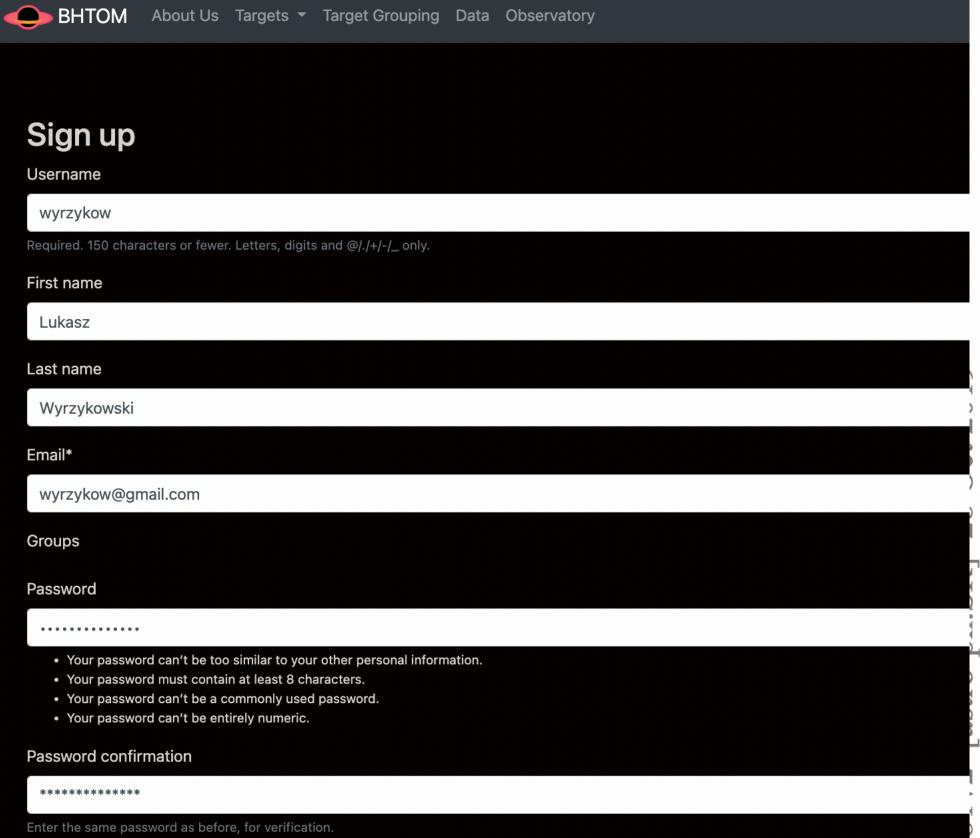
bhtom2

hands-on session 2025 Jan 10

///AkondLab.


hands-on session

- GUI:
 - registration creating an account, LaTeX, About me, ORCID
 - target lists and filtering
 - querying on name: Gaia19axp, TCrB, SN 2024ggi
 - finding your favourite target with cone search
 - direct target url
- API:
 - getting a target list for your telescope
 - getting a target list for your telescope


registration

registration

Astronomy & Astrophysics manuscript no. pap16aye October 30, 2019

©ESO 2019

Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye*

Łukasz Wyrzykowski^{1,**}, P. Mróz¹, K. A. Rybicki¹, M. Gromadzki¹, Z. Kołaczkowski^{45,79,***}, M. Zieliński¹, P. Zieliński¹, N. Britavskiy^{4,5}, A. Gomboc³⁵, K. Sokolovsky^{19,3,66}, S.T. Hodgkin⁶, L. Abe⁸⁹, G.F. Aldi^{20,80}, A. AlMannaei^{62, 100}, G. Altavilla^{72, 7}, A. Al Qasim^{62, 100}, G.C. Anupama⁸, S. Awiphan⁹, E. Bachelet⁶³, V. Bakış¹⁰, S. Baker¹⁰⁰, S. Bartlett⁵⁰, P. Bendjoya¹¹, K. Benson¹⁰⁰, I.F. Bikmaev^{76, 87}, G. Birenbaum¹², N. Blagorodnova²⁴, S. Blanco-Cuaresma^{15,74}, S. Boeva¹⁶, A.Z. Bonanos¹⁹, V. Bozza^{20,80}, D.M. Bramich⁶², I. Bruni²⁵, R.A. Burenin^{84,85}, U. Burgaz²¹, T. Butterley²², H. E. Caines³⁴, D. B. Caton⁹³, S. Calchi Novati⁸³, J.M. Carrasco²³, A. Cassan²⁹, V. Čepas⁵⁶, M. Cropper¹⁰⁰, M. Chruślińska^{1,24}, G. Clementini²⁵, A. Clerici³⁵, D. Conti⁹¹, M. Conti⁴⁸, S. Cross⁶³, F. Cusano²⁵, G. Damljanovic²⁶, A. Dapergolas¹⁹, G. D'Ago⁸¹, J. H. J. de Bruijne²⁷, M. Dennefeld²⁹, V. S. Dhillon^{30,4}, M. Dominik³¹ J. Dziedzic¹, O. Erece³², M. V. Eselevich⁸⁶, H. Esenoglu³³, L. Eyer⁷⁴, R. Figuera Jaimes^{31,53}, S. J. Fossey³⁴, A. I. Galeev^{76, 87}, S. A. Grebenev⁸⁴, A. C. Gupta⁹⁹, A. G. Gutaev⁷⁶, N. Hallakoun¹², A. Hamanowicz^{1, 36}, C. Han², B. Handzlik³⁷, J. B. Haislip⁹⁴, L. Hanlon¹⁰², L. K. Hardy³⁰, D. L. Harrison^{6,88}, H.J. van Heerden¹⁰³, V. L. Hoette⁹⁵, K. Horne³¹, R. Hudec^{39,76,40}, M. Hundertmark⁴¹, N. Ihanec³⁵, E. N. Irtuganov^{76,87}, R. Itoh⁴³, P. Iwanek¹, M.D.Jovanovic²⁶, R. Janulis⁵⁶, M. Jelínek³⁹, E. Jensen⁹², Z. Kaczmarek¹, D. Katz¹⁰¹, I.M. Khamitov^{44,76}, Y.Kilic³², J. Klencki^{1,24}, U. Kolb⁴⁷, G. Kopacki⁴⁵, V. V. Kouprianov⁹⁴, K. Kruszyńska¹, S. Kurowski³⁷, G. Latev¹⁶, C-H. Lee^{17,18}, S. Leonini⁴⁸, G. Leto⁴⁹, F. Lewis^{50, 59}, Z. Li⁶³, A. Liakos¹⁹, S. P. Littlefair³⁰, J. Lu⁵¹, C.J. Manser⁵², S. Mao⁵³, D. Maoz¹², A.Martin-Carrillo¹⁰², J. P. Marais¹⁰³, M. Maskoliūnas⁵⁶, J. R. Maund³⁰, P. J. Meintjes¹⁰³, S. S. Melnikov^{76,87}, K. Ment⁴¹, P. Mikołajczyk⁴⁵, M. Morrell⁴⁷, N. Mowlavi⁷⁴, D. Moździerski⁴⁵, D. Murphy¹⁰², S. Nazarov⁹⁰, H. Netzel^{1,79}, R. Nesci⁶⁷, C.-C. Ngeow⁵⁴, A. J. Norton⁴⁷, E. O. Ofek⁵⁵, E. Pakštienė⁵⁶, L. Palaversa^{6,74}, A. Pandey⁹⁹, E. Paraskeva^{19,78}, M. Pawlak^{1,65}, M. T. Penny⁵⁷, B. E. Penprase⁵⁸, A. Piascik⁵⁹, J. L. Prieto^{96,97}, J. K. T. Qvam⁹⁸, C. Ranc⁷⁰, A. Rebassa-Mansergas^{60,71}, D. E. Reichart⁹⁴, P. Reig^{61,75}, L. Rhodes³⁰, J.-P. Rivet⁸⁹, G. Rixon⁶, D. Roberts⁴⁷, P. Rosi⁴⁸, D.M. Russell⁶², R. Zanmar Sanchez⁴⁹, G. Scarpetta^{20,82}, G. Seabroke¹⁰⁰, B. J. Shappee⁶⁹, R. Schmidt⁴¹, Y. Shvartzvald^{13, 14}, M. Sitek¹, J. Skowron¹, M. Śniegowska^{1,77,79}, C. Snodgrass⁴⁶, P. S. Soares³⁴, B. van Soelen¹⁰³, Z. T. Spetsieri^{19,78}, A. Stankevičiūtė¹, I. A. Steele⁵⁹, R. A. Street⁶³, J. Strobl³⁹, E. Strubble⁹⁵, H. Szegedi¹⁰³, L. M. Tinjaca Ramirez⁴⁸, L. Tomasella⁶⁴, Y. Tsapras⁴¹, D. Vernet¹¹, S. Villanueva Jr.⁵⁷, O. Vince²⁶, J. Wambsganss^{41, 42}, I. P. van der Westhuizen¹⁰³, K. Wiersema^{52,68}, D. Wium¹⁰³, R. W. Wilson²², A. Yoldas⁶, R.Ya. Zhuchkov^{76,87}, D. G. Zhukov⁷⁶, J. Zdanavičius⁵⁶, S. Zoła^{37, 38}, and A. Zubareva^{73, 3}

(Affiliations can be found after the references)

Al. Ujazdowskie 4, 00-478 Warszawa, Poland

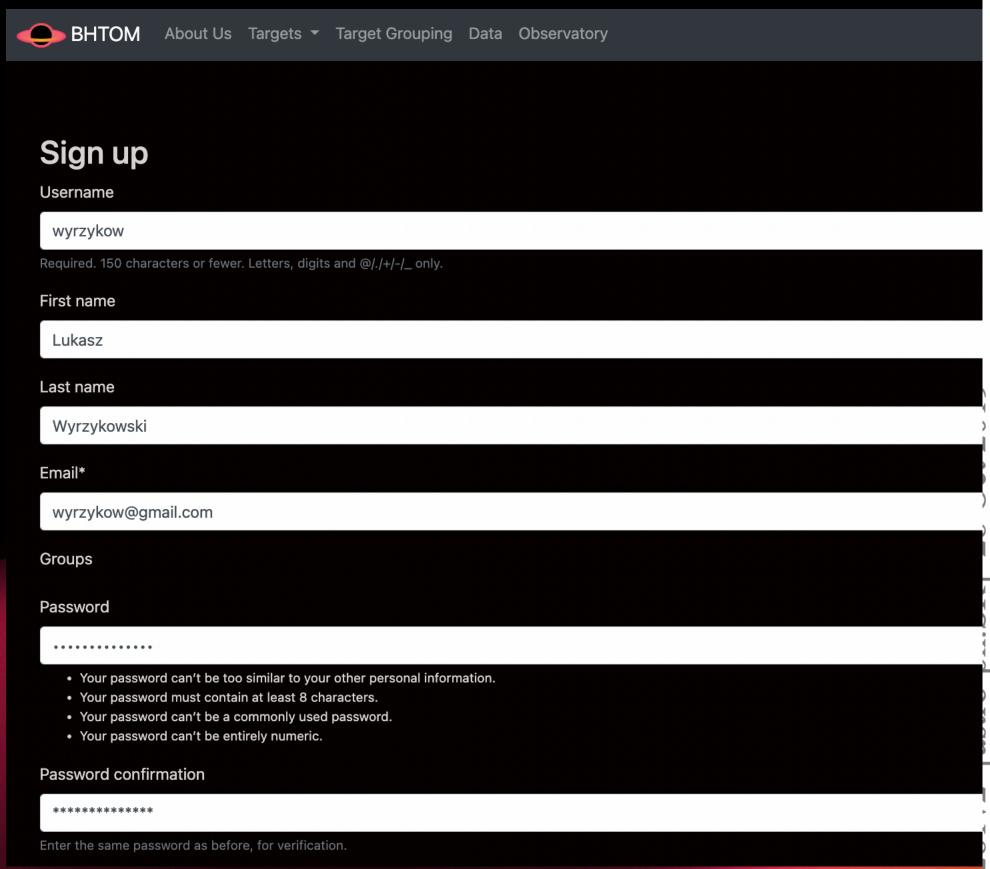
- Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
- Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia
- Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain
- Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
- Institute of Astronomy, University of Cambridge, Madingley Road CB3 0HA, Cambridge, UK
- INAF Osservatorio Astronomico di Roma, Via di Frascati 33, 00078 Monte Porzio Catone (Roma), Italy
- Indian Institute of Astrophysics, II Block Koramangala, Bengaluru 560034, India
- National Astronomical Research Institute of Thailand, 260, Moo 4,
 T. Donkaew, A. Mae Rim, Chiang Mai, 50180, Thailand
- Department of Space Sciences and Technologies, Faculty of Science, Akdeniz University, 07058, Antalya, Turkiye
- ¹ Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
- ² School of Physics and Astronomy, Tel-Aviv University, tel-aviv 6997801, Israel
- Jet Propulsion Laboratory, California Institute of Technology, 4800
 Oak Grove Drive, Pasadena, CA 91109, USA
- ¹⁴ NASA Postdoctoral Program Fellow
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
- Institute of Astronomy and NAO Rozhen, BAS, 72 Tsarighradsko Shousse Blvd., 1784 Sofia, Bulgaria
- National Optical Astronomy Observatory 950 N Cherry Avenue, Tucson, AZ 85719, USA
- Subaru Telescope, National Astronomical Observatory of Japan, 650 N Aohoku Place, Hilo, HI 96720, USA
- ¹⁹ IAASARS, National Observatory of Athens, Vas. Pavlou & I. Metaxa, 15236 Penteli, Greece
- Dipartimento di Fisica E.R. Caianiello, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
- Ciovanni Paolo II 132, I-84084 Fisciano (SA), Italy
 Department of Astronomy and Space Sciences, Ege University,
 35100 Izmir, Turkey
- ²² Centre for Advanced Instrumentation, University of Durham, South Road, Durham DH1 3LE, United Kingdom
- ²³ Institut del Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), c/ Martí i Franquès, 1, 08028 Barcelona, Spain
- Oliversity Ni
 (IEEC-UB), c/ Marti i Franques, 1, 08028 Barcelona, Spain

 24 Department of Astrophysics/IMAPP, Radboud University Ni-
- jmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

 INAF Osservatorio di Astrofisica e Scienza dello Spazio di
 Bologna, via Gobetti 93/3 40129 Bologna Italy

About me*

Professor of Astronomy, Inventor and coordinator of BHTOM


ORCID ID, more details

0000-0002-9658-6151

Register

registration

Astronomy & Astrophysics manuscript no. pap16aye October 30, 2019

©ESO 2019

Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye*

Łukasz Wyrzykowski^{1,**}, P. Mróz¹, K. A. Rybicki¹, M. Gromadzki¹, Z. Kołaczkowski^{45,79,***}, M. Zieliński¹, P. Zieliński¹, N. Britavskiy^{4,5}, A. Gomboc³⁵, K. Sokolovsky^{19,3,66}, S.T. Hodgkin⁶, L. Abe⁸⁹, G.F. Aldi^{20,80}, A. AlMannaei^{62, 100}, G. Altavilla^{72, 7}, A. Al Qasim^{62, 100}, G.C. Anupama⁸, S. Awiphan⁹, E. Bachelet⁶³, V. Bakış¹⁰, S. Baker¹⁰⁰, S. Bartlett⁵⁰, P. Bendjoya¹¹, K. Benson¹⁰⁰, I.F. Bikmaev^{76, 87}, G. Birenbaum¹², N. Blagorodnova²⁴, S. Blanco-Cuaresma^{15,74}, S. Boeva¹⁶, A.Z. Bonanos¹⁹, V. Bozza^{20,80}, D.M. Bramich⁶², I. Bruni²⁵, R.A. Burenin^{84,85}, U. Burgaz²¹, T. Butterley²², H. E. Caines³⁴, D. B. Caton⁹³, S. Calchi Novati⁸³, J.M. Carrasco²³, A. Cassan²⁹, V. Čepas⁵⁶, M. Cropper¹⁰⁰, M. Chruślińska^{1,24}, G. Clementini²⁵, A. Clerici³⁵, D. Conti⁹¹, M. Conti⁴⁸, S. Cross⁶³, F. Cusano²⁵, G. Damljanovic²⁶, A. Dapergolas¹⁹, G. D'Ago⁸¹, J. H. J. de Bruijne²⁷, M. Dennefeld²⁹, V. S. Dhillon^{30,4}, M. Dominik³¹ J. Dziedzic¹, O. Erece³², M. V. Eselevich⁸⁶, H. Esenoglu³³, L. Eyer⁷⁴, R. Figuera Jaimes^{31,53}, S. J. Fossey³⁴, A. I. Galeev^{76, 87}, S. A. Grebenev⁸⁴, A. C. Gupta⁹⁹, A. G. Gutaev⁷⁶, N. Hallakoun¹², A. Hamanowicz^{1, 36}, C. Han², B. Handzlik³⁷, J. B. Haislip⁹⁴, L. Hanlon¹⁰², L. K. Hardy³⁰, D. L. Harrison^{6,88}, H.J. van Heerden¹⁰³, V. L. Hoette⁹⁵, K. Horne³¹, R. Hudec^{39,76,40}, M. Hundertmark⁴¹, N. Ihanec³⁵, E. N. Irtuganov^{76,87}, R. Itoh⁴³, P. Iwanek¹, M.D.Jovanovic²⁶, R. Janulis⁵⁶, M. Jelínek³⁹, E. Jensen⁹², Z. Kaczmarek¹, D. Katz¹⁰¹, I.M. Khamitov^{44,76}, Y.Kilic³², J. Klencki^{1,24}, U. Kolb⁴⁷, G. Kopacki⁴⁵, V. V. Kouprianov⁹⁴, K. Kruszyńska¹, S. Kurowski³⁷, G. Latev¹⁶, C-H. Lee^{17,18}, S. Leonini⁴⁸, G. Leto⁴⁹, F. Lewis^{50, 59}, Z. Li⁶³, A. Liakos¹⁹, S. P. Littlefair³⁰, J. Lu⁵¹, C.J. Manser⁵², S. Mao⁵³, D. Maoz¹², A.Martin-Carrillo¹⁰², J. P. Marais¹⁰³, M. Maskoliūnas⁵⁶, J. R. Maund³⁰, P. J. Meintjes¹⁰³, S. S. Melnikov^{76,87}, K. Ment⁴¹, P. Mikołajczyk⁴⁵, M. Morrell⁴⁷, N. Mowlavi⁷⁴, D. Moździerski⁴⁵, D. Murphy¹⁰², S. Nazarov⁹⁰, H. Netzel^{1,79}, R. Nesci⁶⁷, C.-C. Ngeow⁵⁴, A. J. Norton⁴⁷, E. O. Ofek⁵⁵, E. Pakštienė⁵⁶, L. Palaversa^{6,74}, A. Pandey⁹⁹, E. Paraskeva^{19,78}, M. Pawlak^{1,65}, M. T. Penny⁵⁷, B. E. Penprase⁵⁸, A. Piascik⁵⁹, J. L. Prieto^{96,97}, J. K. T. Qvam⁹⁸, C. Ranc⁷⁰, A. Rebassa-Mansergas^{60,71}, D. E. Reichart⁹⁴, P. Reig^{61,75}, L. Rhodes³⁰, J.-P. Rivet⁸⁹, G. Rixon⁶, D. Roberts⁴⁷, P. Rosi⁴⁸, D.M. Russell⁶², R. Zanmar Sanchez⁴⁹, G. Scarpetta^{20,82}, G. Seabroke¹⁰⁰, B. J. Shappee⁶⁹, R. Schmidt⁴¹, Y. Shvartzvald^{13, 14}, M. Sitek¹, J. Skowron¹, M. Śniegowska^{1,77,79}, C. Snodgrass⁴⁶, P. S. Soares³⁴, B. van Soelen¹⁰³, Z. T. Spetsieri^{19,78}, A. Stankevičiūtė¹, I. A. Steele⁵⁹, R. A. Street⁶³, J. Strobl³⁹, E. Strubble⁹⁵, H. Szegedi¹⁰³, L. M. Tinjaca Ramirez⁴⁸, L. Tomasella⁶⁴, Y. Tsapras⁴¹, D. Vernet¹¹, S. Villanueva Jr.⁵⁷, O. Vince²⁶, J. Wambsganss^{41, 42}, I. P. van der Westhuizen¹⁰³, K. Wiersema^{52,68}, D. Wium¹⁰³, R. W. Wilson²², A. Yoldas⁶, R.Ya. Zhuchkov^{76,87}, D. G. Zhukov⁷⁶, J. Zdanavičius⁵⁶, S. Zoła^{37, 38}, and A. Zubareva^{73, 3}

(Affiliations can be found after the references)

Al. Ujazdowskie 4, 00-478 Warszawa, Poland

- Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
- Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia
- Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain
- Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
- Institute of Astronomy, University of Cambridge, Madingley Road CB3 0HA, Cambridge, UK
- INAF Osservatorio Astronomico di Roma, Via di Frascati 33, 00078 Monte Porzio Catone (Roma), Italy
- Indian Institute of Astrophysics, II Block Koramangala, Bengaluru 560034 India
- 560034, India

 National Astronomical Research Institute of Thailand, 260, Moo 4,
- T. Donkaew, A. Mae Rim, Chiang Mai, 50180, Thailand
 Department of Space Sciences and Technologies, Faculty of Science, Akdeniz University, 07058, Antalya, Turkiye
- ¹ Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
- ² School of Physics and Astronomy, Tel-Aviv University, tel-aviv 6997801, Israel
- Jet Propulsion Laboratory, California Institute of Technology, 4800
 Oak Grove Drive, Pasadena, CA 91109, USA
- ¹⁴ NASA Postdoctoral Program Fellow
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
- Institute of Astronomy and NAO Rozhen, BAS, 72 Tsarighradsko Shousse Blvd., 1784 Sofia, Bulgaria
- National Optical Astronomy Observatory 950 N Cherry Avenue, Tucson, AZ 85719, USA
- Subaru Telescope, National Astronomical Observatory of Japan, 650 N Aohoku Place, Hilo, HI 96720, USA
- ¹⁹ IAASARS, National Observatory of Athens, Vas. Pavlou & I. Metaxa, 15236 Penteli, Greece
- Dipartimento di Fisica E.R. Caianiello, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy
- Chovanni Paolo II 132, 1-84084 Fisciano (SA), Italy
 Department of Astronomy and Space Sciences, Ege University, 35100 Izmir, Turkey
- ²² Centre for Advanced Instrumentation, University of Durham, South Road, Durham DH1 3LE, United Kingdom
- ²³ Institut del Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UR), c/ Martí i Françuès, 1, 08028 Barcelona, Spain
- (IEEC-UB), c/ Martí i Franquès, 1, 08028 Barcelona, Spain

 Department of Astrophysics/IMAPP, Radboud University Ni-
- jmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
 ²⁵ INAF Osservatorio di Astrofisica e Scienza dello Spazio di
- INAF Osservatorio di Astrofisica e Scienza dello Spazio d Bologna, via Gohetti 93/3 - 40129 Bologna - Italy

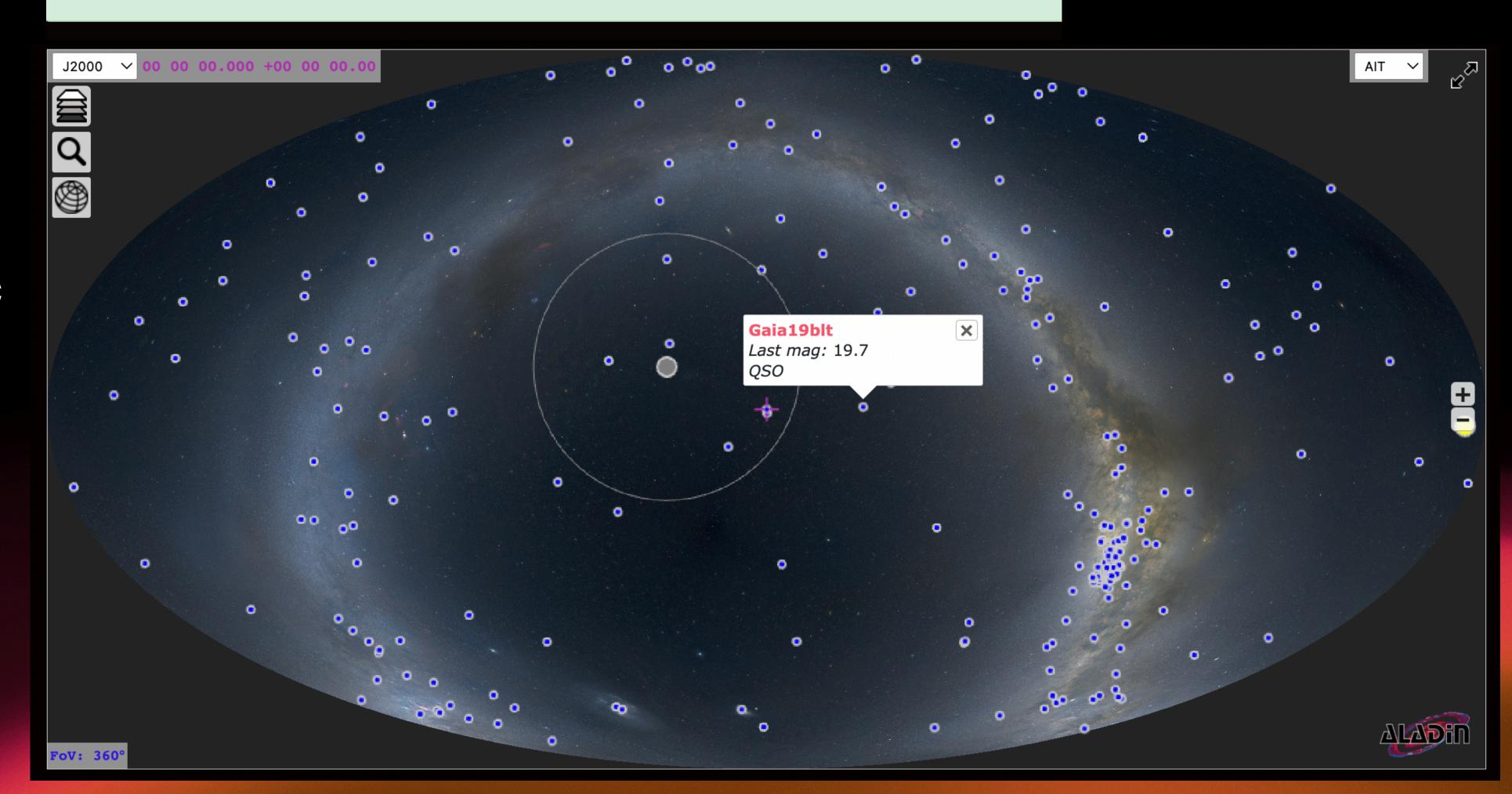
every registration needs approval by a human who will read the About me field Wait for a confirmation email before continuing

About me*

Professor of Astronomy, Inventor and coordinator of BHTOM

ORCID ID, more details

0000-0002-9658-6151


Register

Targets/List

BHTOM2

Warning: Default filter applied. Showing targets with Importance>0 only

- Aladin map
- default: Mellinger
- equatorial-galactic
- interactive
- Moon
- Sun
- other wavelengths
- grid

Targets/List

Show 10 ventries

Add/Remove from grouping	~	Add	Move	Remove
--------------------------	---	-----	------	--------

•	Names ‡	RA ‡	Dec ÷	Nobs 🕏	Last Gmag 🖣	Last Filter 🕏	Importance \$	Created	Priority ‡	Sun 🗦	Class
	Gaia22bpl	10:38:42.425	-61:15:49.680	903	12.7	Gaia/r	9.99	2023-10-01 06:10:13	336.7	62	Microlensing Event
	Gaia23cpd	19:10:08.822	-04:43:14.736	1810	15.1	Gaia/r	9.99	2023-10-01 18:10:29	91.6	100	Unknown
	Gaia23bay	19:49:42.996	+10:43:41.448	1953	13.8	Gaia/r	9.99	2023-10-01 19:10:47	46.8	110	Unknown
	Gaia22bra	19:50:00.876	+26:29:07.908	2150	15.7	Gaia/r	9.99	2023-10-01 17:10:22	23.6	109	Unknown
	Gaia23cnu	18:56:25.440	-18:04:50.880	1364	15.4	Gaia/r	9.99	2023-10-01 18:10:28	121.6	95	Unknown
	Gaia21fkl	07:46:28.378	-21:52:32.016	1380	15.8	Gaia/r	9.99	2023-10-01 08:10:18	32.6	71	Unknown
	Gaia22dkv	10:07:04.555	-66:10:51.204	1304	13.2	Gaia/r	9.99	2023-10-01 09:10:52	335.3	68	Unknown
	Gaia23cnw	18:29:59.232	-14:02:27.564	265	17.7	Gaia/r	9.99	2023-10-01 18:10:28	126.6	89	Unknown
	Gaia23cqh	19:08:36.578	+11:08:30.552	1406	17.0	Gaia/r	9.99	2023-10-01 18:10:29	66.5	100	Unknown

Showing 1 to 9 of 9 entries Previous 1 Next

Targets/List

			target grou	pings	A	dd/Remove from	grouping			Add	Move	emove
Show	10 v entries	S	sortable columns									
	Names [‡]	RA ‡	Dec ‡	Nobs 🗦	Last Gmag 🖣	Last Filter 🗦	Importance [‡]	Created	Priority [‡]	Sun 🗦	Class	
	Gaia22bpl	10:38:42.425	-61:15:49.680	903	12.7	Gaia/r	9.99	class as e	num		Microlensing	g Event
	Gaia23cpd	19:10:08.822	-04:43:14.736	1810	15.1	Gaia/r	9.99	2023-10-01 18:10:29	91.6	100	Unknown	
	Gaia23bay	19:49:42.996	+10:43:41.448	1953	13.8	Gaia/r	9.99	2023-10-01 19:10:47	46.8	110	Unknown	
	Gaia22bra	19:50:00.876	+26:29:07.908	2150	15.7	Gaia/r	9.99	2023-10-01 17:10:22	23.6	109	Unknown	
	Gaia23cnu	18:56:25.440	-18:04:50.880	1364	15.4	Gaia/r	9.99	2023-10-01 18:10:28	121.6	95	Unknown	
	Gaia21fkl	07:46:28.378	-21:52:32.016	1380	15.8	Gaia/r	9.99	2023-10-01 08:10:18	32.6	71	Unknown	
	Gaia22dky	10:07:04 555	-66:10:51.204		13.2	Gaia/r	9.99	2023-10-01 09:10:52	335.3	68	Unknown	
			ted roughly ia G availabl		17.7	Gaia/r	9.99	2023-10-01 18:10:28	126.6	89	Unknown	
	(USES a	all but WIS	E bands)	J6	17.0	Gaia/r	9.99	2023-10-01 18:10:29	66.5	100	Unknown	
Showii	ng 1 to 9 of 9 e	ntries								Previ	ous 1	Next

Showing 1 to 9 of 9 entries

Previous 1 Next

Targets/List - filtering example

RA (0,360)

min	RA (0,360)
max	RA (0,360)

Dec (-90,90)

min	0
max	Dec (-90,90)

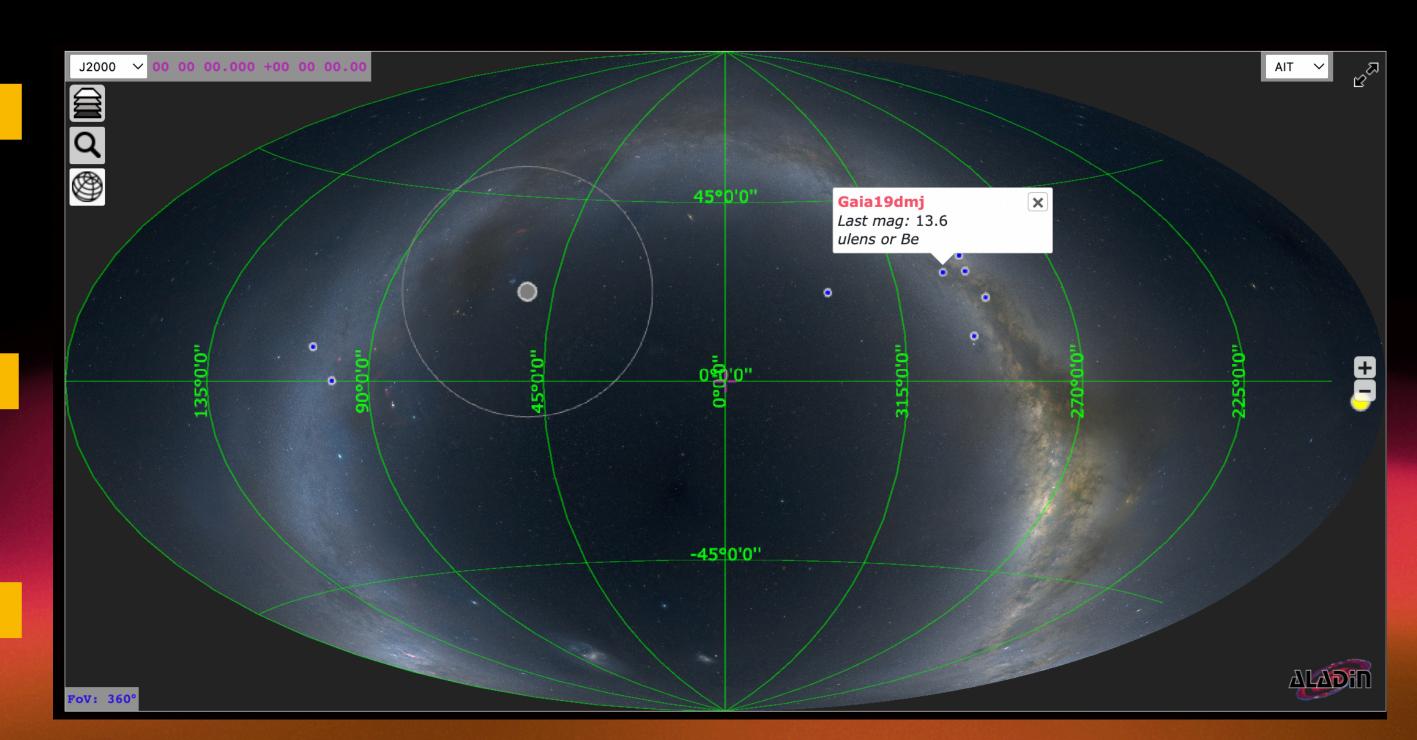
North only

Importance (0,10)

min	4
max	Importance (0,10)

Importance>4

Sun separation (0,360)


min	60
max	Sun separation (0,360)

visible now

Last G magnitude

min	Last G magnitude
max	18

not fainter than 18 mag

Targets/List - filtering example

ACTION - find by name:

Nova: V1674_Her

Gaia nova: Gaia 22 alz

Nearby supernova: SN2023ixf

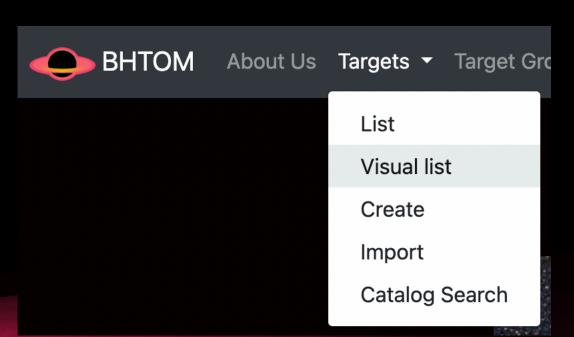
Obscurration event: ASASSN-24fw

(Importance >= 0)

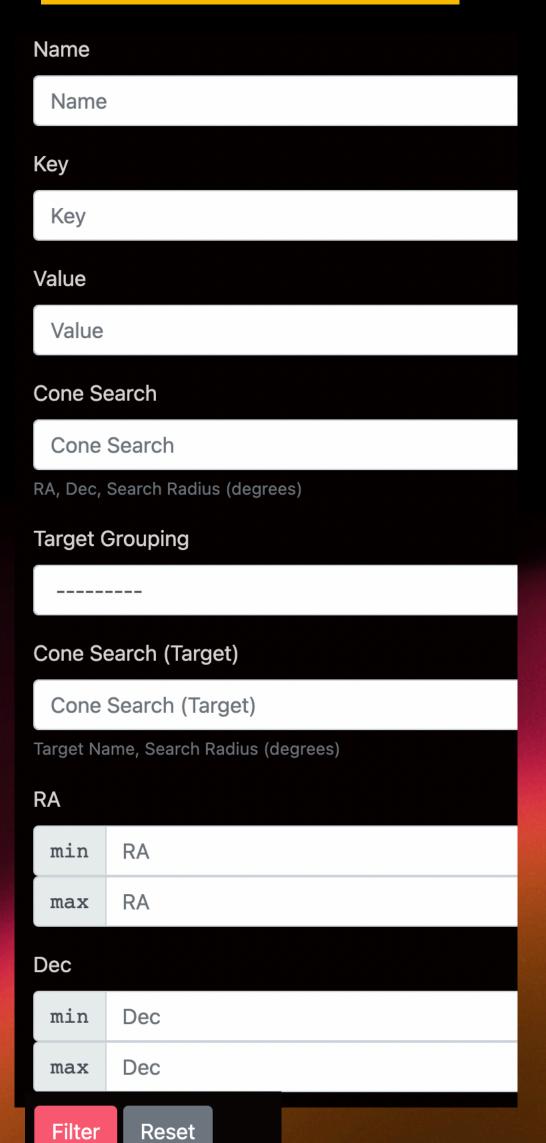
ACTION - find by conditions

Any targets brighter than 14 mag Importance > 4 Far from the Sun (>70 deg)

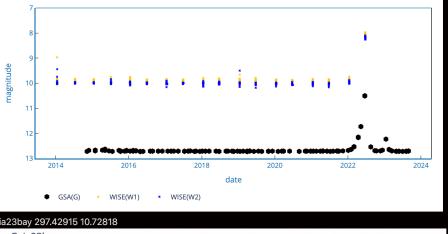
ACTION - find by type:

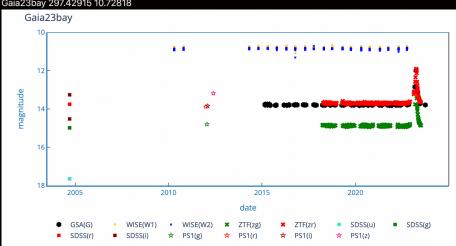

Classification: Quasar

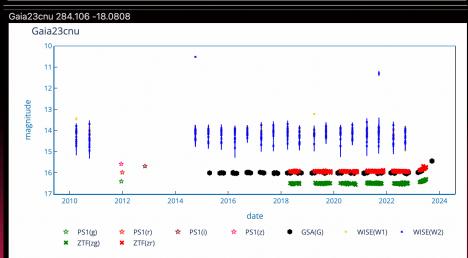
or

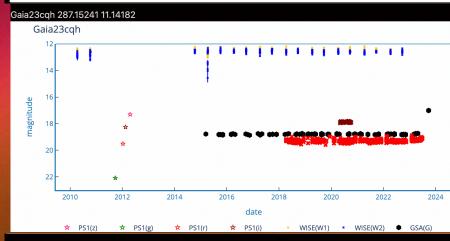

Description contains "quasar"

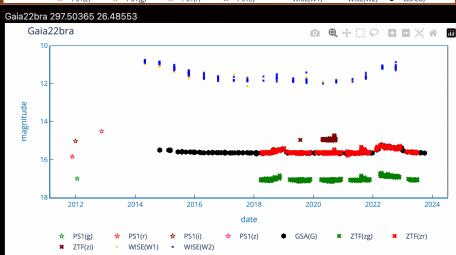
(Importance >= 0)


Targets/Visual List




define your filter first





interactive plots click links to detail

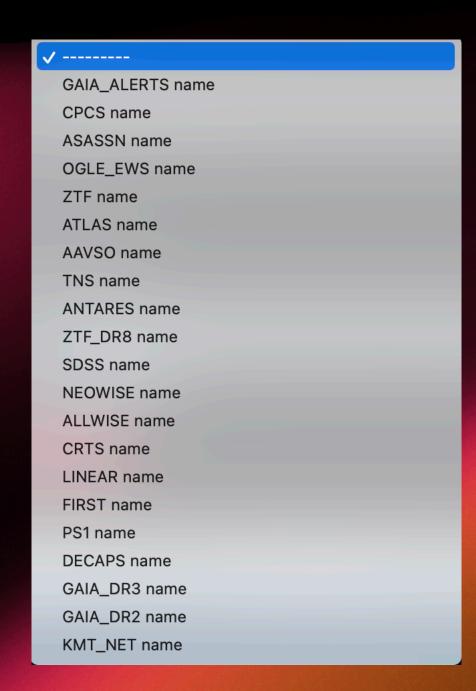
Targets/Create

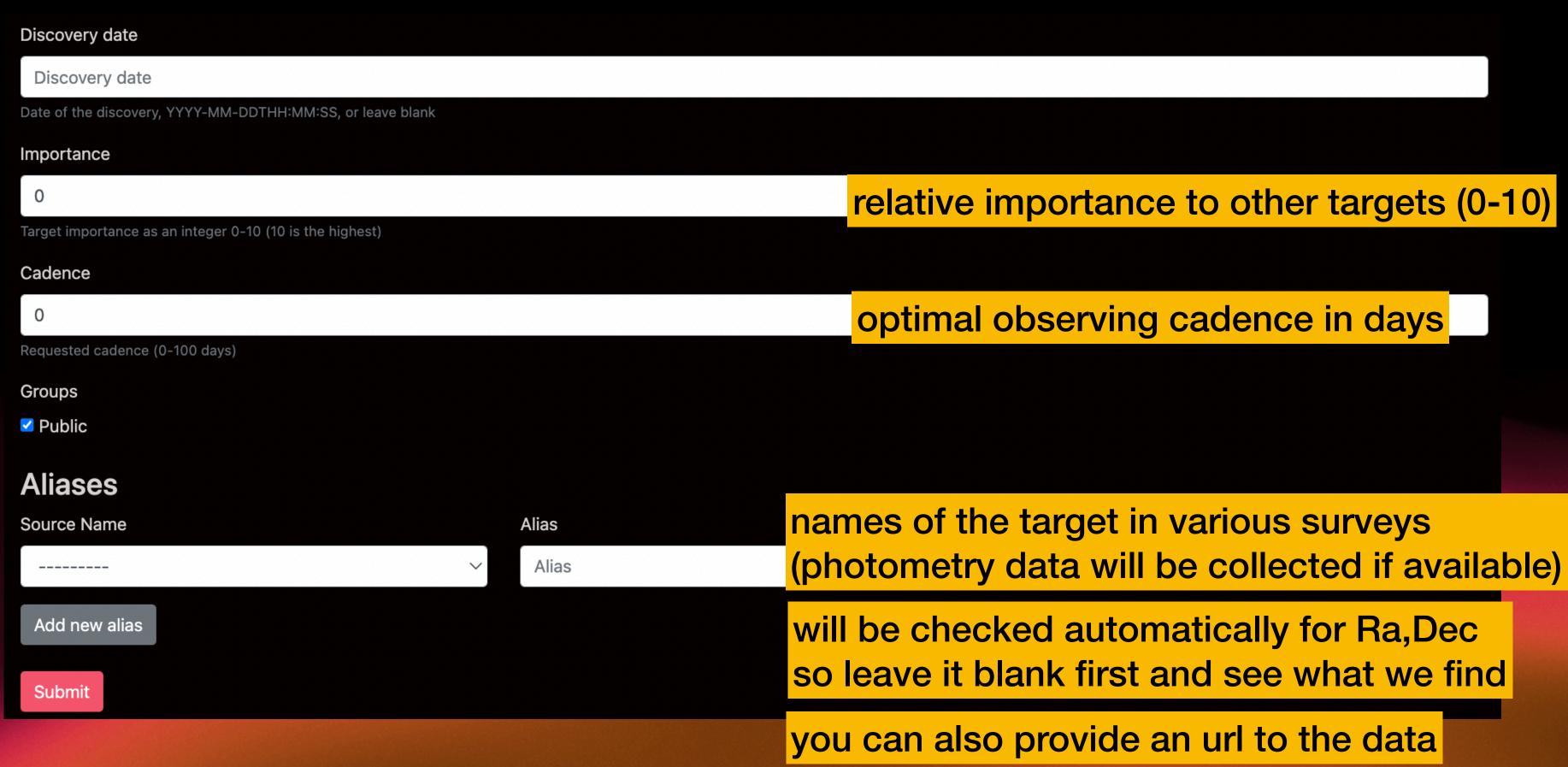
- Create manually
- Import
- Catalog search

Targets/Create

- Create manually
- Import
- Catalog search

classification types


Lukasz Wyrzykowski (wyrzykow) Logout


ı	
	Be-star outburst
	Active Galactic Nucleus(AGN)
	BL Lac
	Cataclysmic Variable(CV)
	Cepheid Variable(CEPH)
	Eclipsing Binary(EB)
	Galaxy
	Long Period Variable(LPV)
	Luminous Blue Variable(LBV)
	M-dwarf flare
	Microlensing Event
	Nova
	Peculiar Supernova
	Quasar(QSO)
	R CrB Variable
	RR Lyrae Variable
	Solar System Object(SSO)
	Star
	Supernova(SN)
	Supernova imposter
	Symbiotic star
	Tidal Disruption Event(TDE)
	Variable star-other
	X-Ray Binary(XRB)
	Young Stellar Object(YSO)
٠	

Targets/Create

- Create manually
- Import
- Catalog search

Targets/Create — Import

BHTOM2

Import Targets

If you want to add all imported targets to a new group, please fill in the "Group name" field (optional).

Upload a .csv to import targets in bulk.

Allowed field names:

name, ra, dec, epoch, parallax, pm_ra, pm_dec, distance, distance_err, classification, description, discovery_date, importance, cadence, phot_class, description, epoch_of_elements, mean_anomaly, arg_of_perihelion, eccentricity, lng_asc_node, inclination, mean_daily_motion, semimajor_axis, epoch_of_perihelion, ephemeris_period, ephemeris_period_err, ephemeris_epoch, ephemeris_epoch_err, perihdist

List of available classifications:

Be-star outburst, AGN, BL Lac, CV, CEPH, EB, Galaxy, LPV, LBV, M-dwarf flare, Microlensing Event, Nova, Peculiar Supernova, QSO, RCrB, RR Lyrae Variable, SSO, Star, SN, Supernova imposter, Symbiotic star, TDE, Variable star-other, XRB, YSO

- powerful tool!
- use with caution!
- important: correct headers in CSV files (case sensitive!)
- special case for Gaia Alerts

all targets from this import will be added to this group

Choose file No file chosen

```
CSV file format examples:
                                                        redshift, distance, classification, description
                           123.12,
                                          -12.34,
             SIDERAL,
                                                                                                      nice supernova
             123.12,
                          -12.34, 5,
             GAIA_ALERTS_name
name,
             Gaia20dup
              GAIA_ALERTS_name, cadence
name,
             Gaia20dup,
In these special cases, the Gaia Alerts harvester will gather all information from Gaia Alerts, but any extra columns in the CSV file with corresponding fields will replace those read from Gaia Alerts.
You can upload max 500 targets.
Group Name (optional):
```

Targets/Create — Catalog Search

Search Catalogs for a Target

Term

Gaia19axp

Service

✓ Gaia Alerts

ANTARES

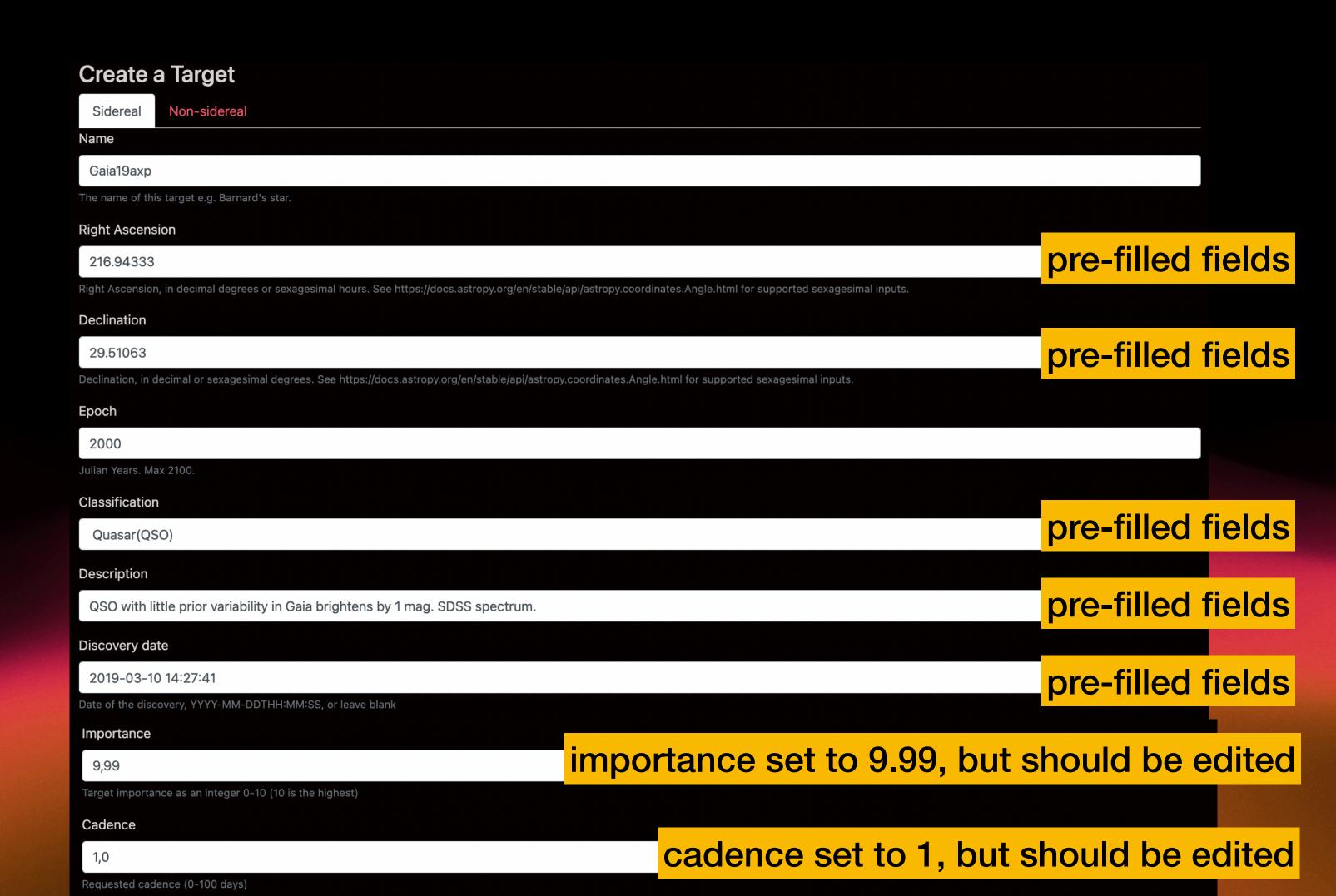
OGLE EWS

TNS

NED

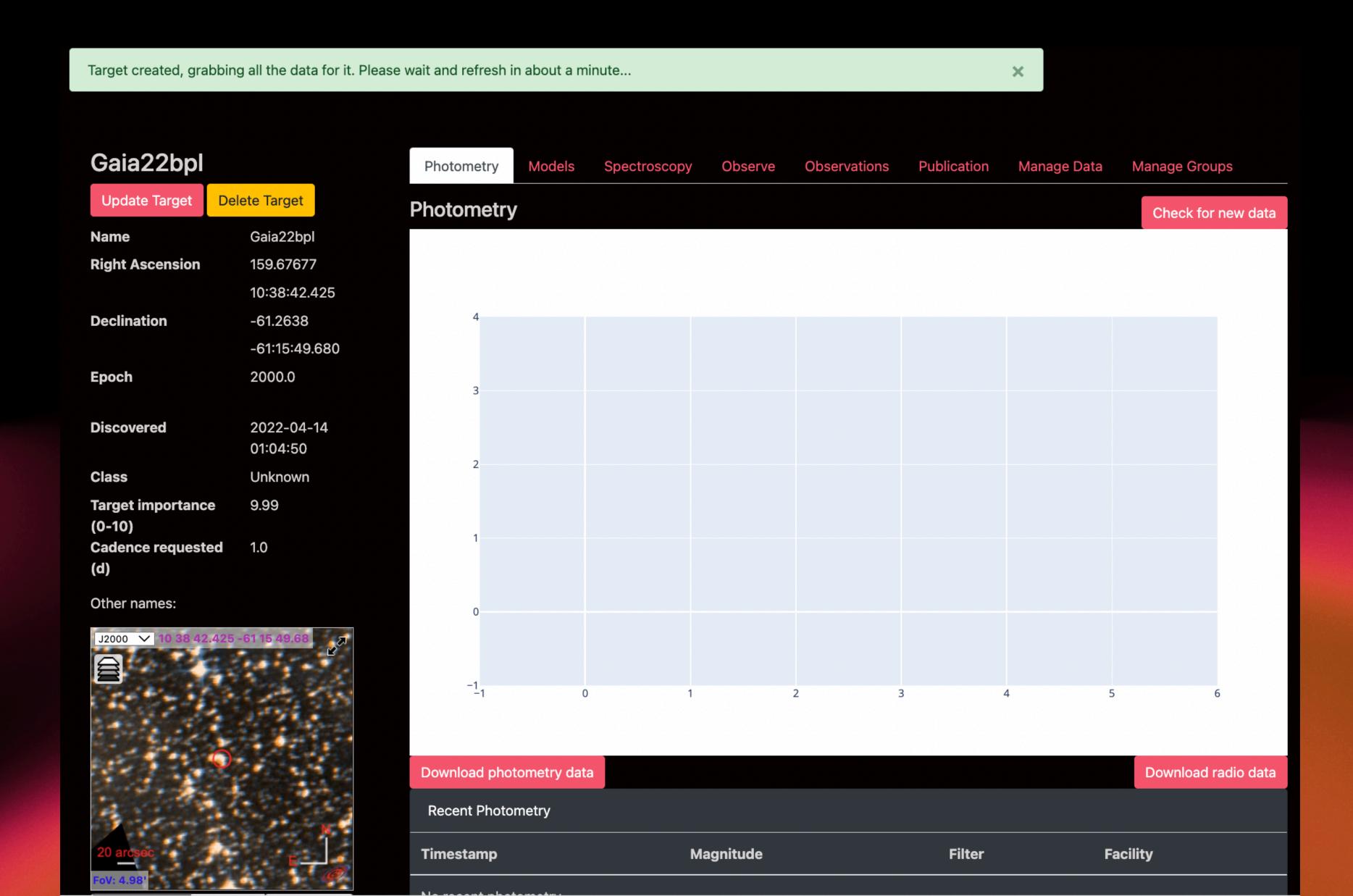
Simbad

Search Catalogs for a Target

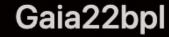

Term

SN2023ixf

Service


TNS

search


Target page

Target page

DIRECT ACCESS via name: https://bh-tom2.astrolabs.pl/targets/Gaia22bpl/

Update Target Delete Target

Gaia22bpl Name **Right Ascension** 159.67677

10:38:42.425

-61.2638 Declination

-61:15:49.680

2000.0 **Epoch Galactic Longitude** 287.662164 **Galactic Latitude** -2.390806

Constellation Carina

2022-04-14 Discovered 01:04:50

Microlensing Event Class

Ulens Candidate Phot.Class

100.0%

Last MJD 60184.56631

12.7 Last G Mag **Target importance** 9.99

(0-10)

Cadence requested 1.0

Observing priority 330.0 Sun Separation 62.0

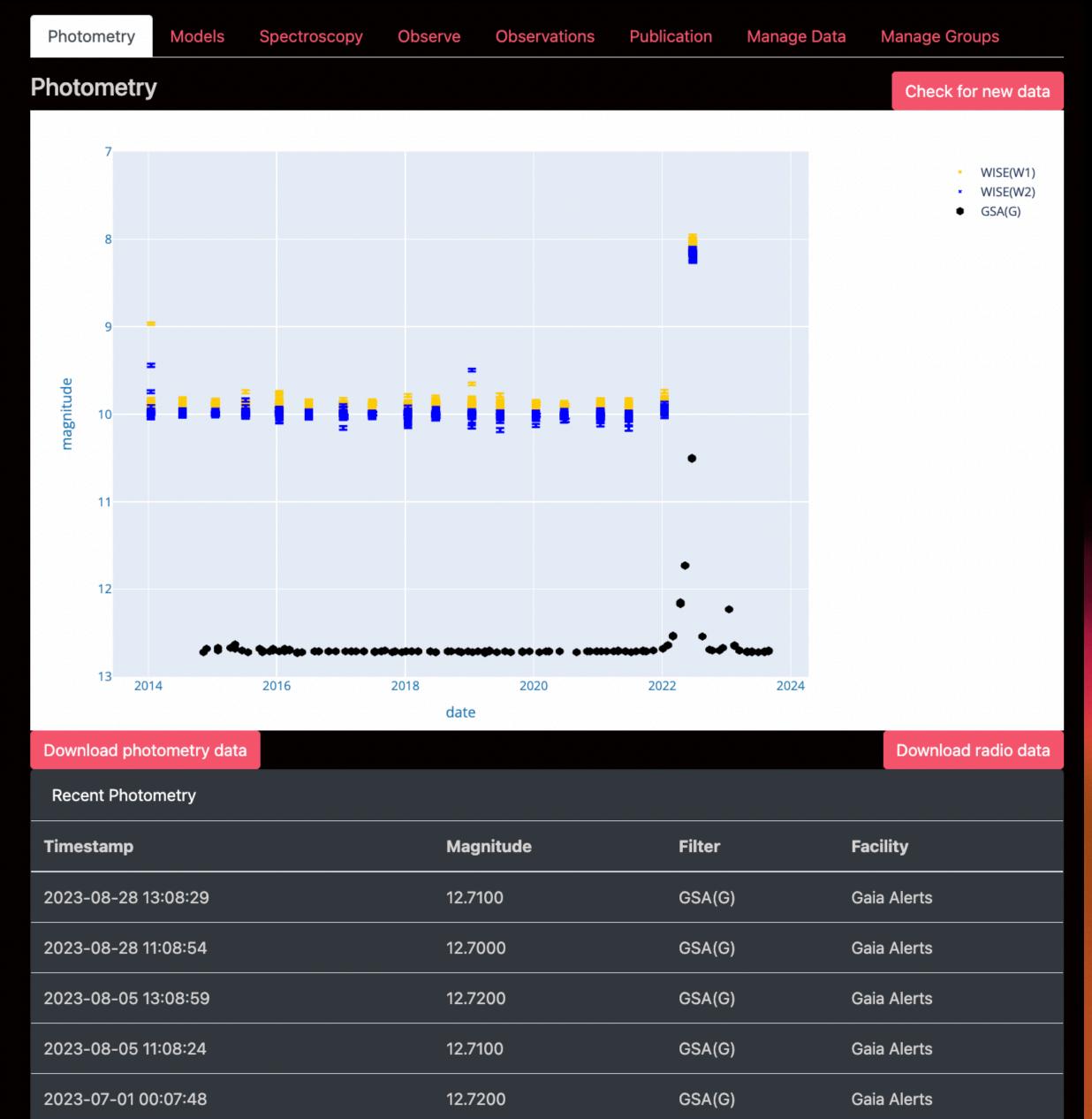
(deg)

Other names:

GAIA_ALERTS

Gaia22bpl

GAIA_DR3


5254100872645875968

NEOWISE

NEOWISE+J159.67677_-61.2638

CRTS

CRTS+J159.67677_-61.2638

Target page

Gaia22bpl

Update Target Delete Target

Gaia22bpl Name **Right Ascension** 159.67677

10:38:42.425

Declination -61.2638

-61:15:49.680

2000.0 **Epoch Galactic Longitude** 287.662164 -2.390806

Galactic Latitude

Constellation

Carina

Discovered

2022-04-14 01:04:50

Class

Microlensing Event

Phot.Class

Ulens Candidate

100.0%

Last MJD

60184.56631

Last G Mag

12.7

9.99

Target importance

(0-10)

Cadence requested 1.0

Observing priority

330.0 62.0

Sun Separation (deg)

Other names:

GAIA_ALERTS

Gaia22bpl

GAIA_DR3

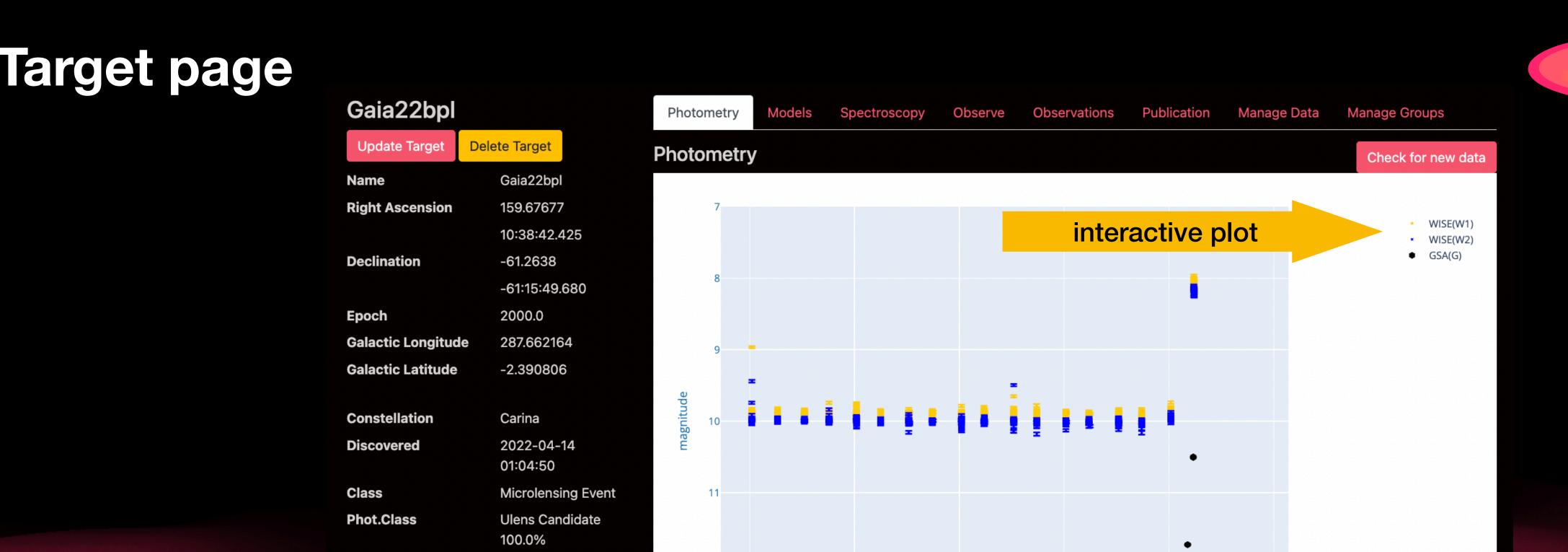
5254100872645875968

NEOWISE

NEOWISE+J159.67677_-61.2638

CRTS

CRTS+J159.67677_-61.2638


Photometry	Models	Spectroscopy	Observe	Observations	Publication	Manage Data	Manage Groups
Photometry	,						Check for new data
7 8 9 apniingem 10 11 12 12 13 201	•••	2016	2018	2020	2022	2024	■ WISE(W1) ■ GSA(G)
Download phot	tometry data	а					Download radio data
Recent Photo	metry						
Timestamp			Mag	gnitude	Filter		Facility
2023-08-28 13	3:08:29		12.7	'100	GSA(G)		Gaia Alerts
2023-08-28 1	1:08:54		12.7	000	GSA(G)		Gaia Alerts
2023-08-05 13	3:08:59		12.7	'200	GSA(G))	Gaia Alerts
2023-08-05 1	1:08:24		12.7	'100	GSA(G))	Gaia Alerts
2023-07-01 00	0:07:48		12.7	'200	GSA(G)		Gaia Alerts

external links

constellation

automatic classification

external links

2023-08-05 11:08:24

2023-07-01 00:07:48

Target importance	9.99
(0-10)	
Cadence requested	1.0

60184.56631

12.7

62.0

data download

Sun Separation

(deg)

Last MJD

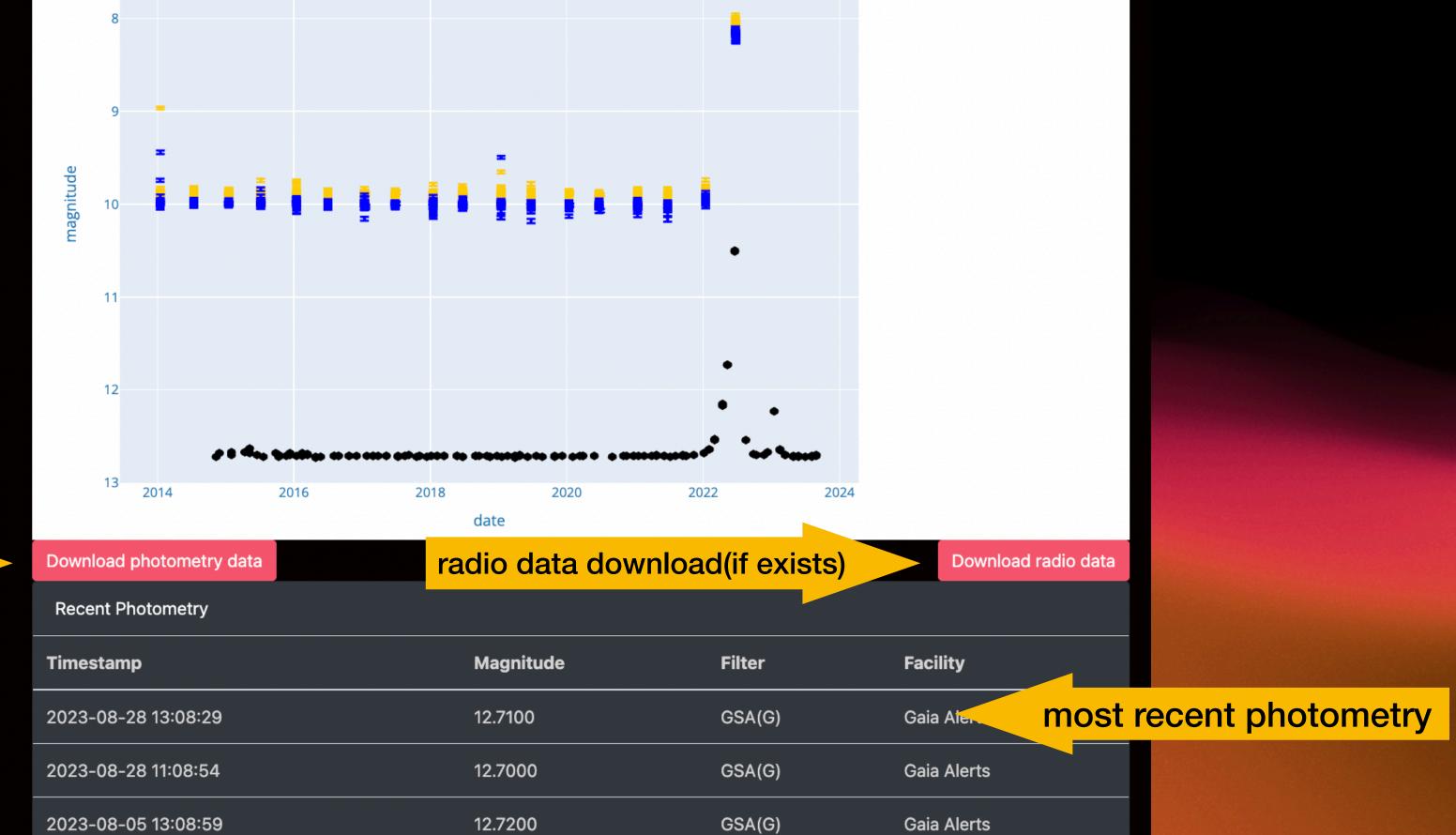
Last G Mag

Other names:

GAIA_ALERTS

Gaia22bpl

GAIA_DR3


5254100872645875968

NEOWISE

NEOWISE+J159.67677_-61.2638

CRTS

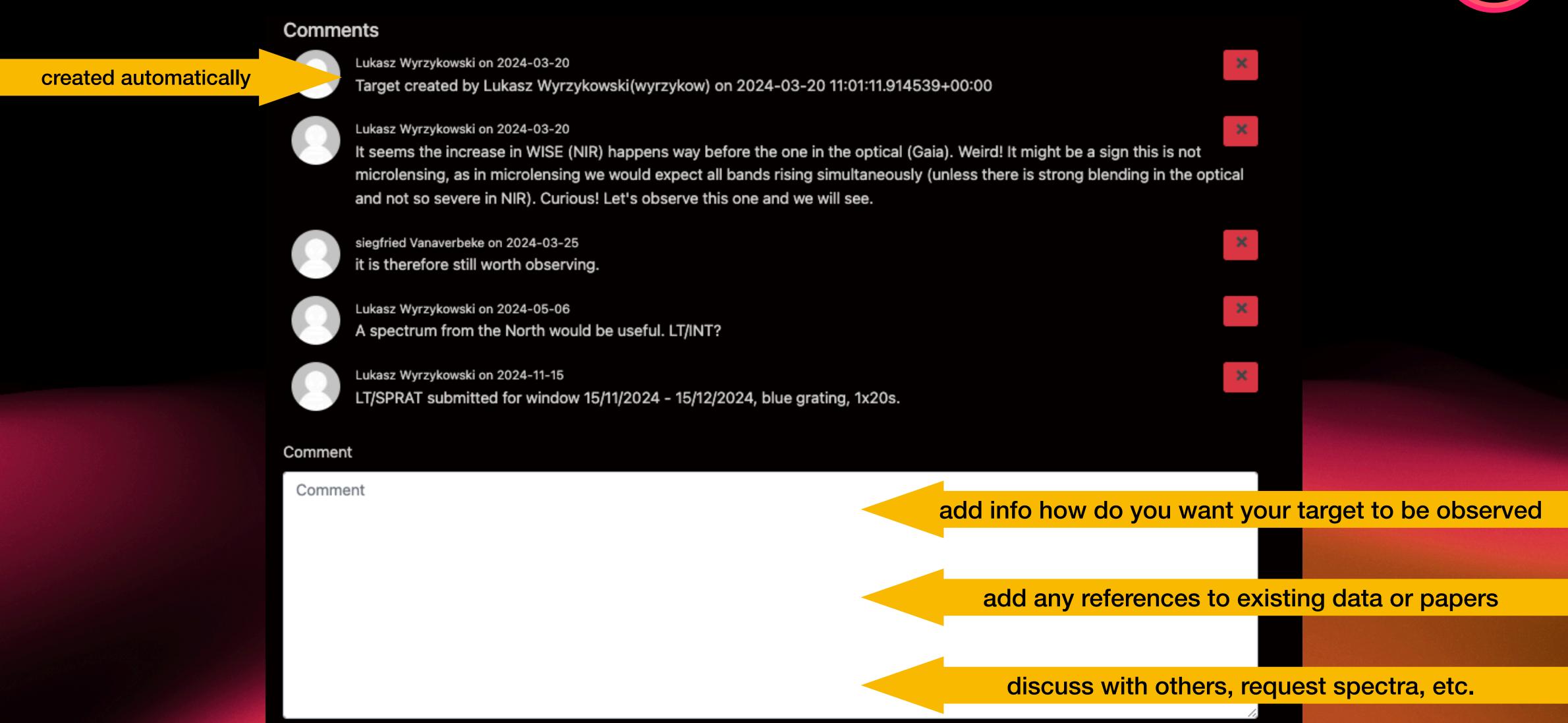
CRTS+J159.67677_-61.2638

12.7100

12.7200

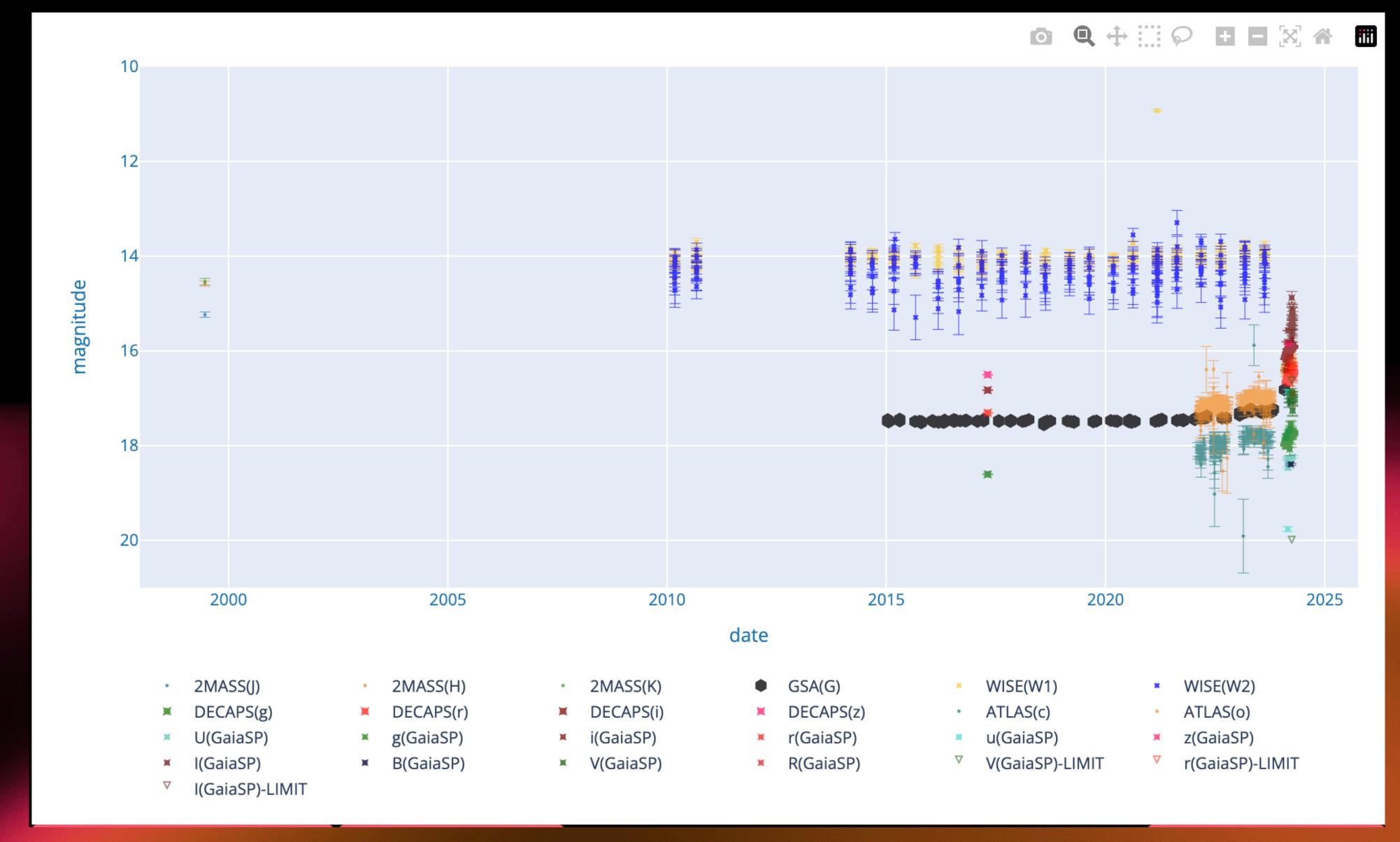
GSA(G)

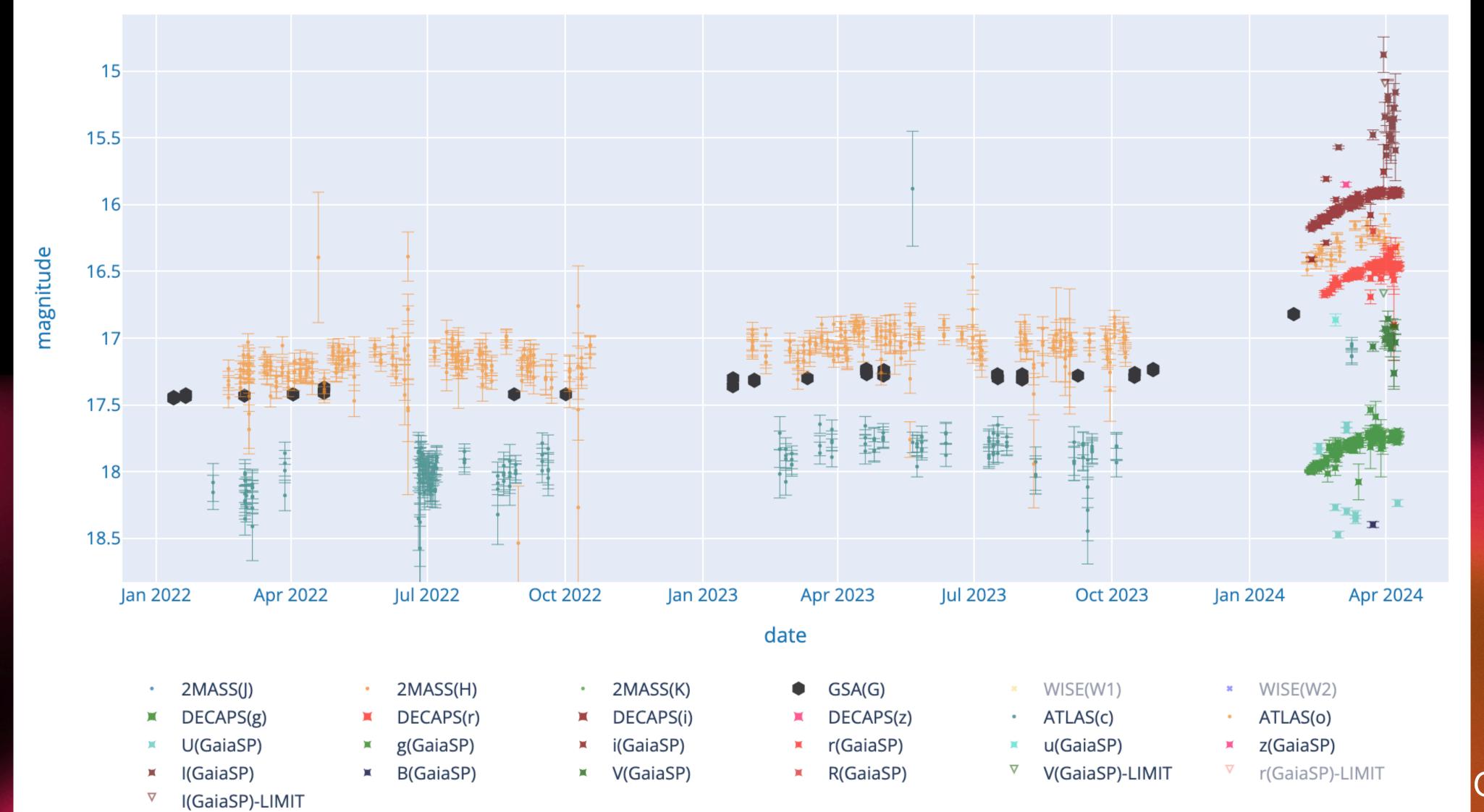
GSA(G)


Gaia Alerts

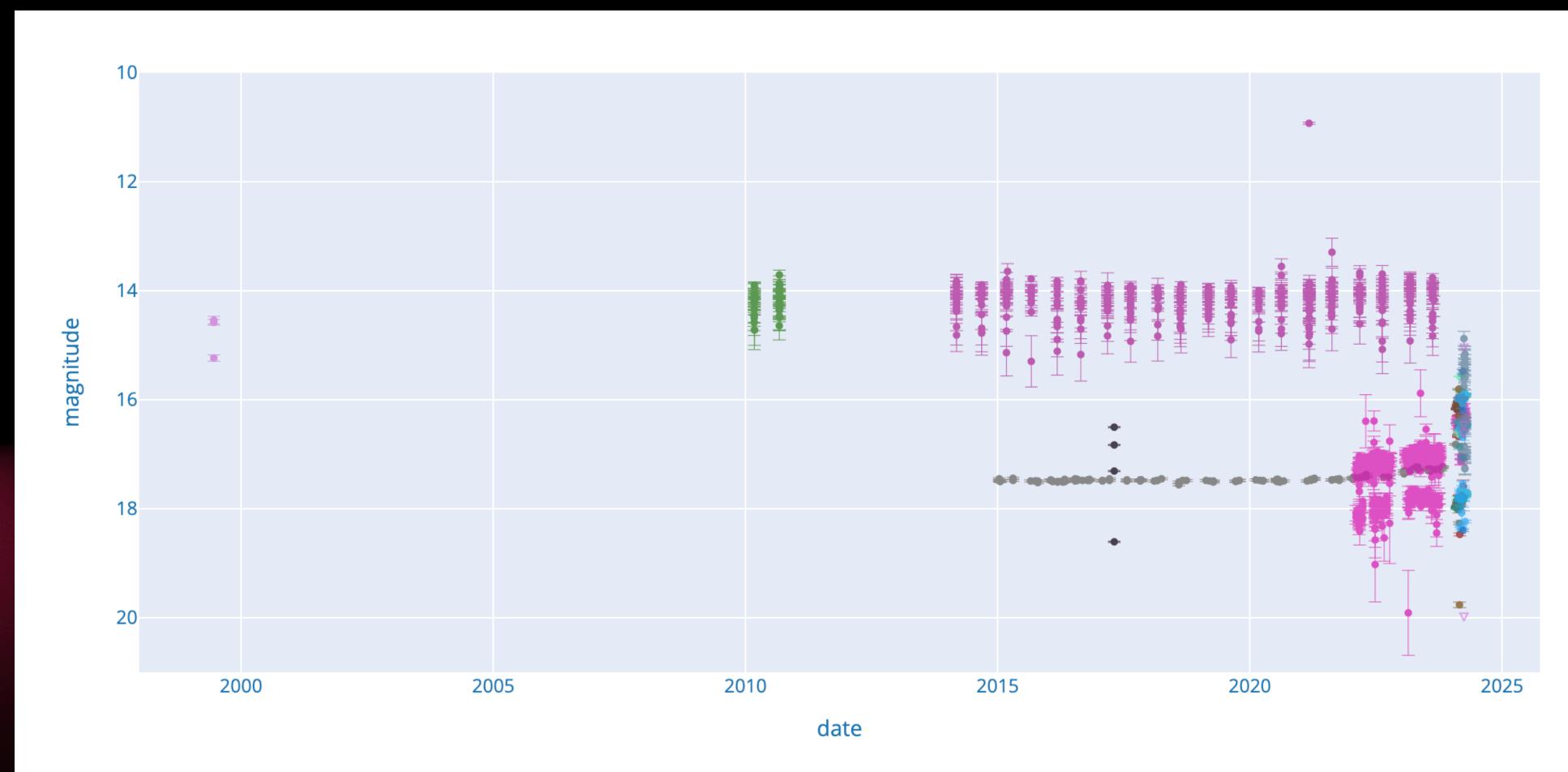
Gaia Alerts

BHTOM2


Target page - comments

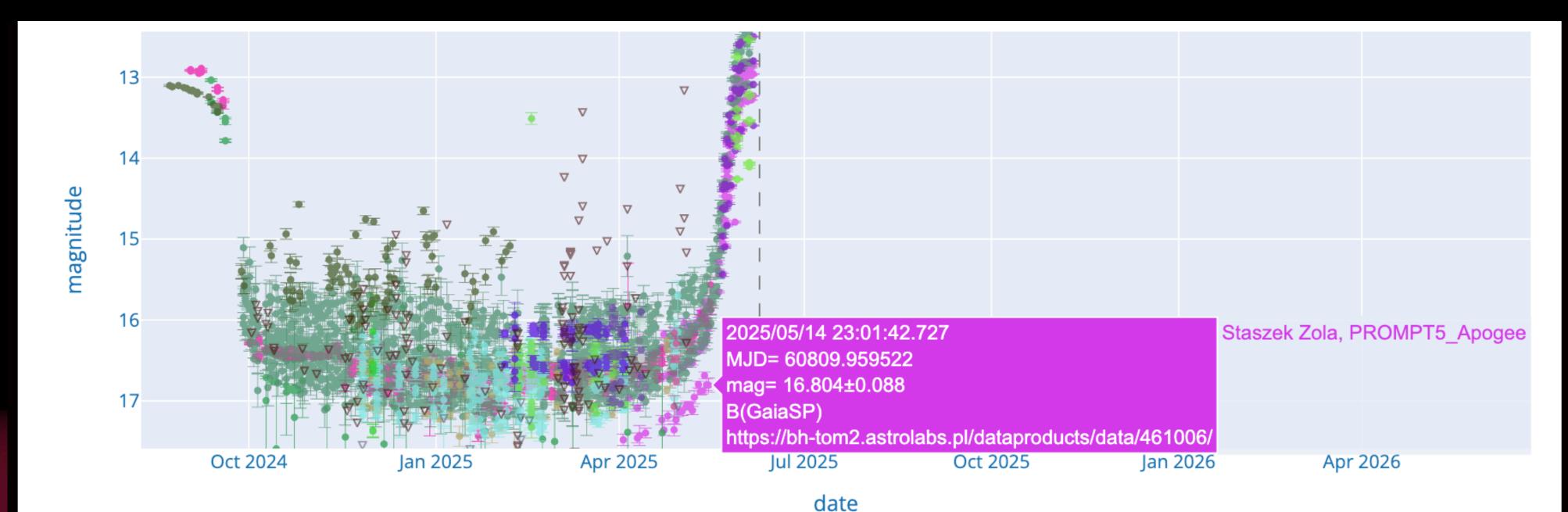

BHTOM2

Target page - light curve - per filter


Target page - light curve - per filter

Target page - light curve - per facility

- 2MASS, 2MASS
- ALLWISE, ALLWISE
- Uliana Pylypenko, LCOGT-SAAO-1m_4K
- Rachel Street, LCOGT-SAAO-1m_4K
- Jaroslav Merc, DANISH_DFOSC-FASU


- Gaia Alerts, Gaia Alerts
- DECAPS, DECAPS
- Uliana Pylypenko, LCOGT-CTIO-1m_4K
- Rachel Street, LCOGT-CTIO-1m_4K
- Franz-Josef Hambsch, ROAD_QHY600M

- NEOWISE, NEOWISE
- ATLAS, ATLAS
- Rachel Street, LCOGT-SS-1m_4K
- Uliana Pylypenko, LCOGT-SS-1m_4K
- ▼ Franz-Josef Hambsch, ROAD_QHY600M-LIMIT

BHTOM2

Target page - light curve - per facility

each data point with data we process is linked to a Data Product subpage

- Staszek Zola, PROMPT5_Apogee
- ZTF, ZTF
- ALLWISE, ALLWISE
- Franz-Josef Hambsch, ROAD_QHY600M
- Staszek Zola, OAUJ-CDK500_F42
- Agnieszka Gurgul, PIWNICE90_C4-16000EC
- ASASSN, ASASSN
- Staszek Zola, RRRT_SBIG-STX16803
- Staszek Zola, PROMPT6_FLI
- Agnieszka Gurgul, UZPW50_Chile_QHY268PRO
- ▼ Staszek Zola, OAUJ-CDK500_F42-LIMIT
- Staszek Zola, PROMPT-MO-1_Apogee-LIMIT

- NEOWISE, NEOWISE
- 2MASS, 2MASS
- ATLAS, ATLAS
- Staszek Zola, PROMPT-MO-1_Apogee
- Adam Popowicz, SUTO-Otivar_ASI1600MM
- Sebastian Kurowski, SOAB_ZWO-ASI2600MM
- Alexios Liakos, Kryoneri-1.2_Andor-Zyla
- Justas Zdanavicius, MOLETAI-35cm_CCD4710
- Lukasz Wyrzykowski, DASCH
- Franz-Josef Hambsch, ROAD_QHY600M-LIMIT
- Agnieszka Gurgul, PIWNICE90_C4-16000EC-LIMIT
- NOW

each data point with data we process is linked to a Data Product subpage

Calibration		
Target: ASASSN-24fw		Gaia SP/B ZP=0.31 σ =0.038 f_o =0.01 Np=183 Gaia SP/I ZP=1.79 σ =0.473 f_o =0.01 Np=185 Gaia SP/R ZP=1.38 σ =0.363 f_o =0.01 Np=184 Gaia SP/U ZP=0.26 σ =0.100 f_o =0.05 Np=43
Photometry	444936.dat	18 17 17 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15
Owner	Staszek Zola	16 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14
Observers		
Observatory prefix	PROMPT5_Apogee	12 14 16 18 10 11 12 13 14 15 16 17 Gaia SP/V ZP=0.97 σ=0.239 f _o =0.01 Np=184 Gaia SP/g ZP=0.69 σ=0.104 f _o =0.01 Np=183 Gaia SP/i ZP=1.38 σ=0.445 f _o =0.01 Np=185 Gaia SP/r ZP=1.18 σ=0.335 f _o =0.01 Np=184
Time Uploaded	2025-05-16 08:22:12	19 18
Time Photometry	2025-05-16 08:23:23	17
Status	Calibration successful	15 15 15 14 14 14 14 14 14 14 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
MJD	60809.95952231018	
Calib Survey/Filter	GaiaSP/any	12 14 16 18 18 12 14 16 18 12 14 16 18 18 12
Standardised to	GaiaSP/B	17 18 18 17
Magnitude	16.804 +/- 0.088 mag	15
ZP	0.305 mag	14 15 14 14 14 17 18 18 18 18 18 18 18
Scatter	0.038 mag	
Number of datapoints used for calibration	183	Download Calibration Plot
Outlier fraction	0.0	
Matching radius[arcsec]	0.5091168824544087	
Dry Run (no data will be stored in the database)	False	
Comment	None	
Calibration log	444936.log	

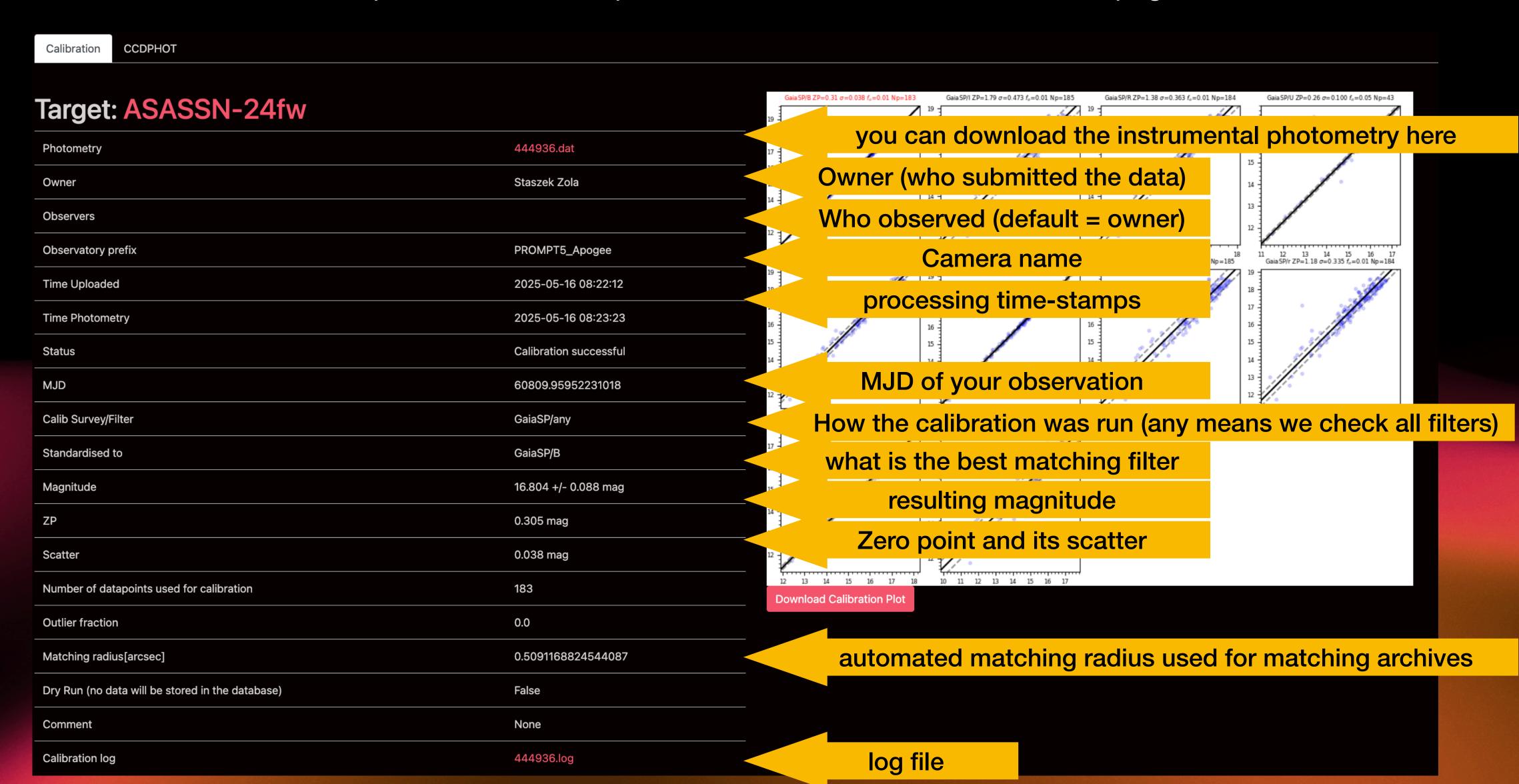
Dataproducts - your observations

Comment

Calibration log

each data point with data we process is linked to a Data Product subpage

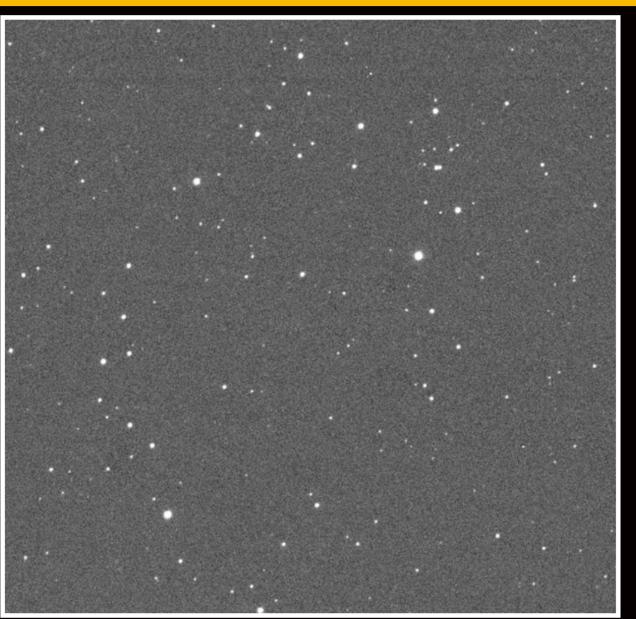
Calibration		
Target: ASASSN-24fw		Gaia SP/B ZP=0.31 σ=0.038 f _o =0.01 Np=183 Gaia SP/I ZP=1.79 σ=0.473 f _o =0.01 Np=185 Gaia SP/R ZP=1.38 σ=0.363 f _o =0.01 Np=184 Gaia SP/U ZP=0.26 σ=0.100 f _o =0.05 Np=43
Photometry	444936.dat	18 17 17 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15
Owner	Staszek Zola	16 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14
Observers		
Observatory prefix	PROMPT5_Apogee	12 14 16 18 10 11 12 13 14 15 16 17 Gaia SP/V ZP=0.97 σ=0.239 f _o =0.01 Np=184 10 11 12 13 14 15 16 17 Gaia SP/g ZP=0.69 σ=0.104 f _o =0.01 Np=183 11 12 13 14 15 16 17 Gaia SP/r ZP=1.18 σ=0.445 f _o =0.01 Np=185 Gaia SP/r ZP=1.18 σ=0.335 f _o =0.01 Np=184
Time Uploaded	2025-05-16 08:22:12	19 19 18 18 18 18 18 18 18 18 18 18 18 18 18
Time Photometry	2025-05-16 08:23:23	17 17 16 16 17 16 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 17 16 18 18 18 18 18 18 18 18 18 18 18 18 18
Status	Calibration successful	15 15 15 14 14 14 15 14 14 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
MJD	60809.95952231018	
Calib Survey/Filter	GaiaSP/any	12 14 16 18 12 14 16 18 12 14 16 18 12 14 16 18 12 14 16 18 Gaia SP/u ZP=-0.57 σ=0.094 f _o =0.08 Np=40 Gaia SP/z ZP=1.47 σ=0.515 f _o =0.01 Np=184
Standardised to	GaiaSP/B	17 18 18 17
Magnitude	16.804 +/- 0.088 mag	15
ZP	0.305 mag	14 - 15 - 14 - 14 - 14 - 14 - 14 - 14 -
Scatter	0.038 mag	
Number of datapoints used for calibration	183	12 13 14 15 16 17 18 10 11 12 13 14 15 16 17 Download Calibration Plot
Outlier fraction	0.0	
Matching radius[arcsec]	0.5091168824544087	Automated detection of the best matching filter
Dry Run (no data will be stored in the database)	False	


None

444936.log

Dataproducts - your observations

each data point with data we process is linked to a Data Product subpage


Dataproducts - your observations

each data point with data we process is linked to a Data Product subpage

if a fits file was processed, this tab shows its details and a thumbnail

Target: ASASSN-24fw				
Fits	24_assasn_24fwp5_12609699_B_012.fits			
Instrument	PROMPT5 & Apogee CCD			
Instrument Prefix	PROMPT5_Apogee			
Target RA	106.328999999998			
Target DEC	6.20530555555555			
Dry Run	False			
Fits ID	-1			
Priority	4			
Start Time	2025-05-16 08:22:12			
Status Time	2025-05-16 08:22:56			
Status Message	Photometry result			
Progress	N/A			
Fits File	N/A			
CCDPhot Result	N/A			
CCDPhot Result File	N/A			
CCDPhot Stdout File	N/A			
Fits Object	N/A			
Fits RA	N/A			
Fits DEC	N/A			
Fits MJD	60809.95952231018			

Target page/Models

Gaia22bpl

Update Target Delete Target

Name Gaia22bpl
Right Ascension 159.67677

10:38:42.425

Declination -61.2638

-61:15:49.680

Epoch 2000.0

Galactic Longitude 287.662164

Galactic Latitude -2.390806

Constellation Carina

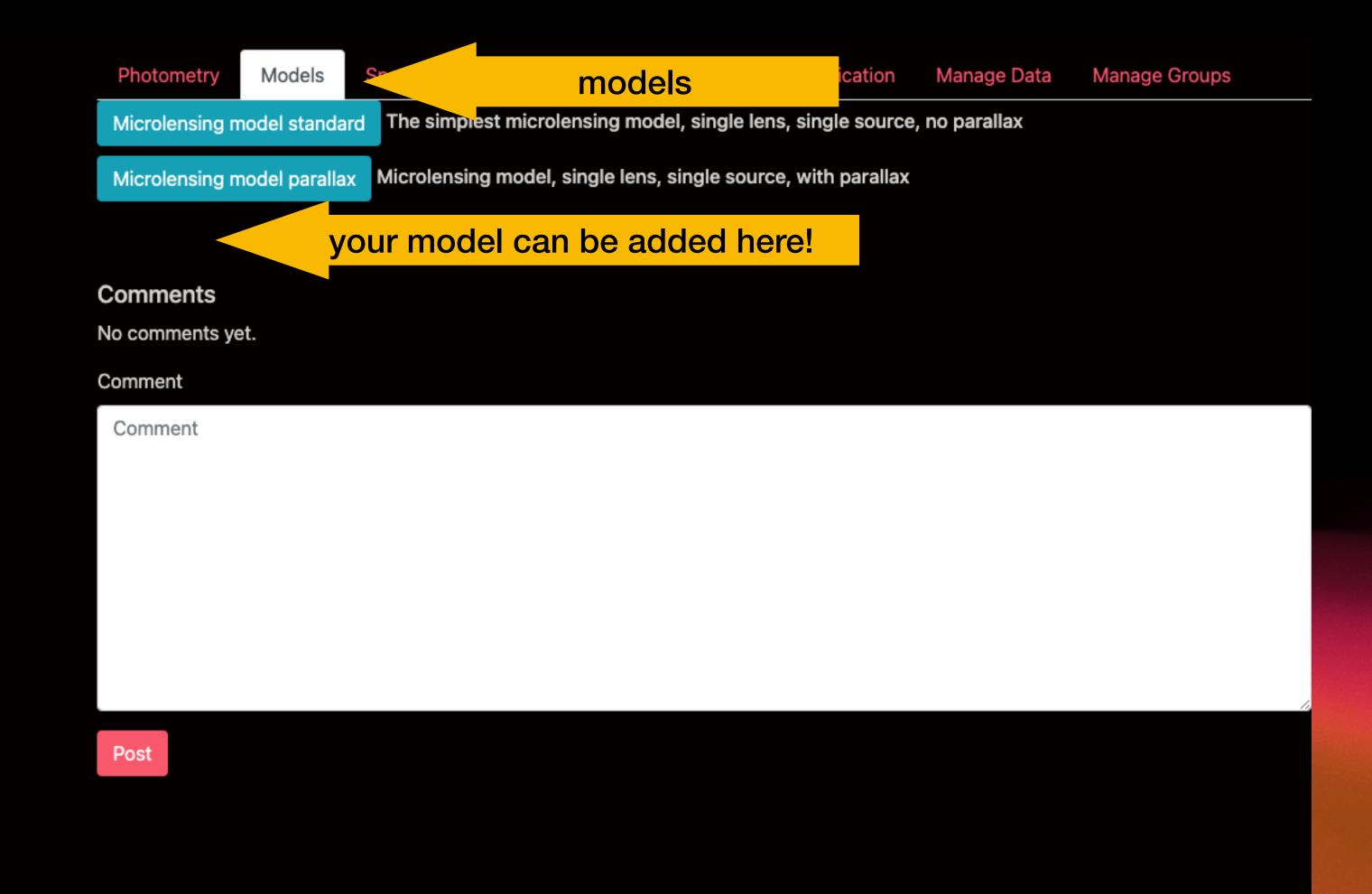
Discovered 2022-04-14 01:04:50

Class Microlensing Event

Phot.Class Ulens Candidate 100.0%

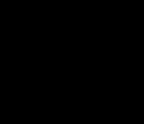
Last MJD 60184.56631

Last G Mag 12.7

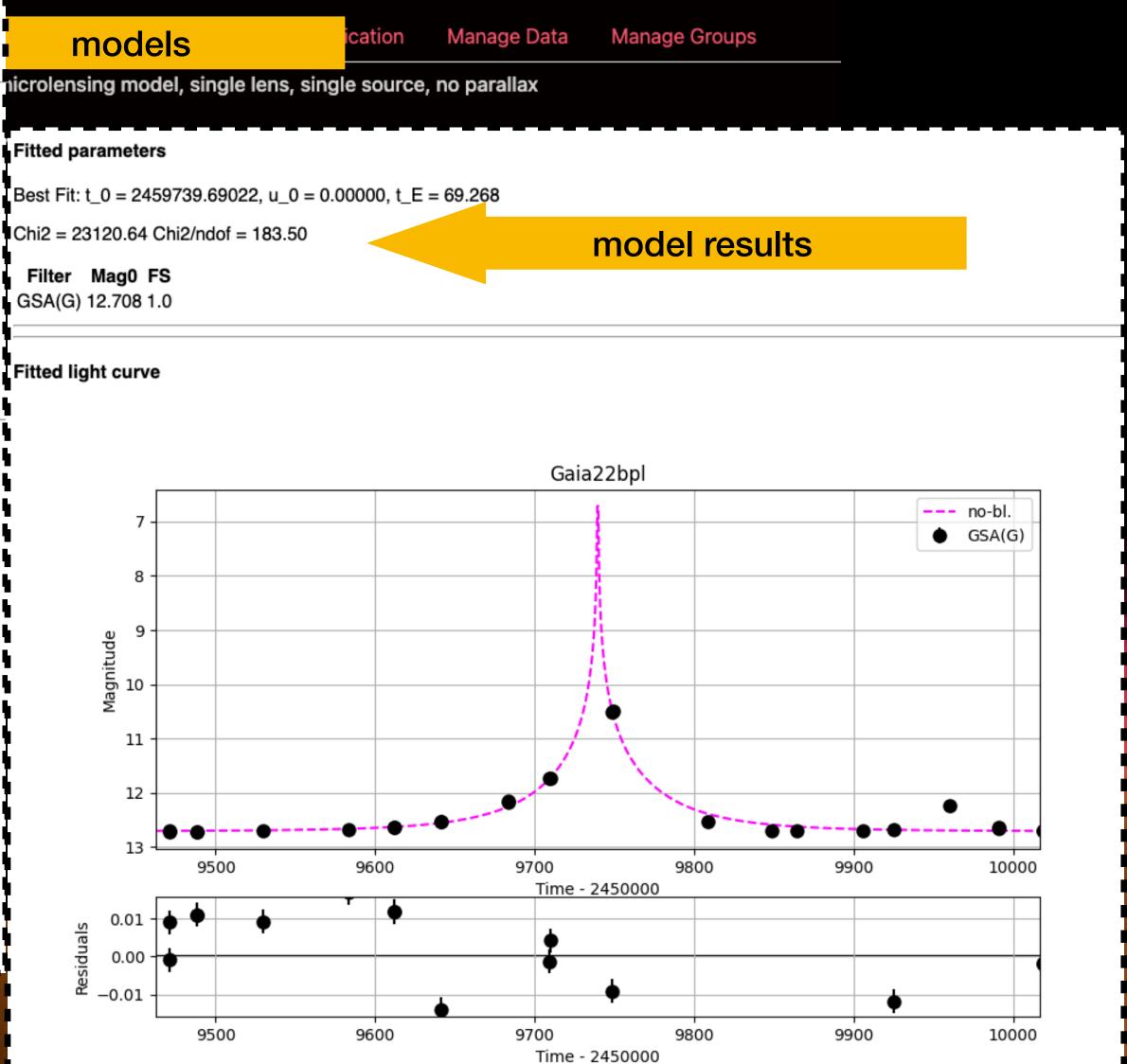

Target importance (0-10) 9.99

Cadence requested (d) 1.0

Observing priority 336.7

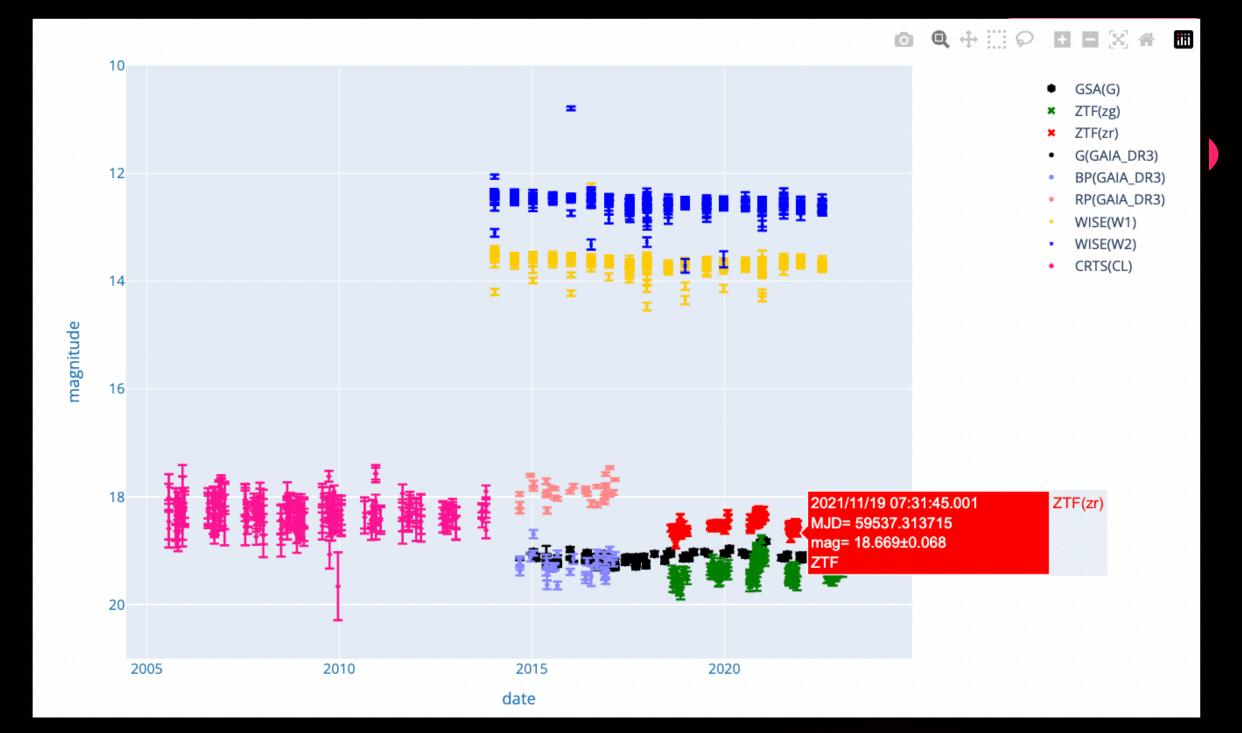

Sun Separation (deg) 62.0

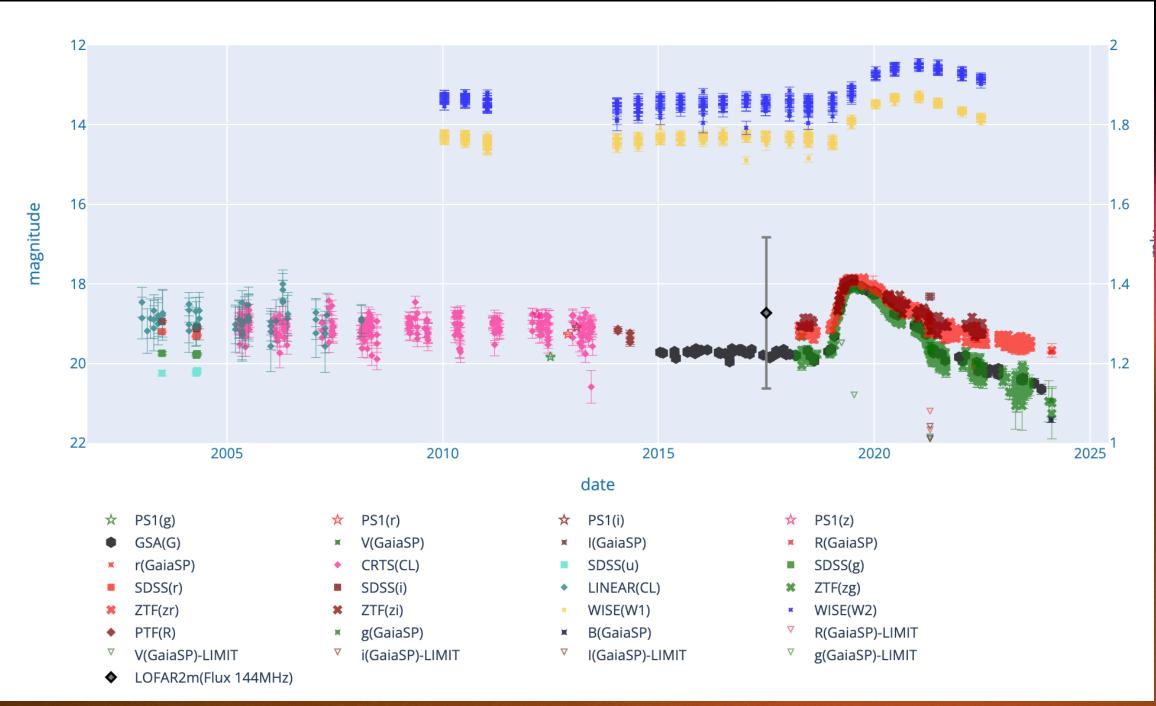
Other names:



BHTOM2

Target page/Models — separate interactive window





Time of fitting execution: 0.112 seconds

archives (via brokers)

- Gaia Science Alerts (2014+)
- Gaia DR3 variables (2014-2017)
- ZTF Data Release and alerts (2018+) through ANTARES and Alerce
- Catalina Real-Time Survey, CRTS (2005-2014)
- LINEAR (2003-2008)
- SDSS + Stripe82
- PS1, DECAPS
- IR: 2MASS, ALLWISE + NEOWISE (2010+)
- FIRST and LOFAR (radio)
- ATLAS (South+North)
- ASAS-SN (V/g)
- OGLE EWS, OCVS
- will be added:
 - + DASH Harvard photographic plates (<1900)
 - + Evryscope (Southern Hemisphere down to 12mag)
 - + ASAS All sky (1996-2010)

Target page/Publication

Update Target Delete Target

Name Gaia19axp

Right Ascension 216.94333

14:27:46.399

Declination 29.51063

+29:30:38.268

Epoch 2000.0

Galactic Longitude 45.028655

Galactic Latitude 68.703383

Constellation Boötes

Discovered 2019-03-10

14:03:41

Class Quasar(QSO)

Phot.Class Not Ulens 78.0%

Last MJD -10000.0

Last G Mag 100.0

Photometry M

Models

Spectroscopy

Observe

Observations

Publication

Manage Data

Manage Groups

Generate LaTeX target description

P	hot	tom	etry	State	8
---	-----	-----	------	-------	---

Facility	Filters	Number	Min MJD	Max MJD
ALLWISE	WISE(W1), WISE(W2)	177	55210.69	55574.43
CRTS	CRTS(CL)	235	53470.35	56464.28
Gaia Alerts	GSA(G)	139	57037.46	60202.07
NEOWISE	WISE(W1), WISE(W2)	591	56670.95	59752.75
SDSS	SDSS(u), SDSS(g), SDSS(r), SDSS(i), SDSS(z)	37	52821.22	53117.36
ZTF	ZTF(zg), ZTF(zr), ZTF(zi)	1134	58202.38	60124.24

Download photometry stats as LaTeX table

Target page / Manage Data (upload)

Photometry

Mode

Spectroscopy

Observe

Observations Publication

Manage Data

Manage Groups

Upload a data product

Here you can upload your photometric and spectroscopic observations for this target. Please refer to the BHTOM manual for details. Example CSV formats for photometry and spectroscopy. Note, we require MJD (Modified Julian Date = JD-240000.5) in the photometry file!

SExtractor format is required for instrumental photometry. FITS is not supported for spectra yet.

Non-detections are marked with error >= 99.0 (e.g. 99.0, 99.9 etc.)

For photometric FITS processing choose the observatory from the list. You can add a new observatory here.

You can upload up to 5 files at once.

You can also use a python script for external fits upload, see the BHTOM's API documentation

Choose a Files

Choose files No file chosen

Data product type

- Photometry SExtractor format
- Photometry CSV
- FITS File
- Spectroscopy
- Dry Run (no data will be stored in the database)

MJD OBS *	
MJD OBS *	
Observers * x Lukasz Wyrzykowski (wyrzykow) x	
Observatory*	
	~
Force filter	
GaiaSP/any	~
Comment	
Comment	

Observatory — adding existing observatory to your list

Only

List of observatories

List of your registered observatories/instruments you can use for uploading the data for processing. You should register an observatory in your account if you want a datapoint to be I Here you can add a new observatory to your list if you are planning to upload images or instrumental photometry for it. You can choose one from the list of already registered observatore. Note that different instrument (e.g. CCD) on the same telescope counts as a different observatory.

Favorite Observatories

Observatories

Observatory Name	Lon	Lat	Prefix	Comment	Instrumental photometry file	Details
Adiyaman 60 / Andor iKon-M 934	321.77459	37.751703	Adyu60_Andor-934	PlaneWave 24" CDK on ASA DM16	False	Details
Adonis observatory / Moravian G2 1600 camera	357.074618	50.91524	Adonis_G2-1600	Sky-watcher quattro F4 250 mm	False	Details
Aristarchos telscope / TEK2K camera	337.803889	37.984444	ARISTARCHOS_TEK2K	Aristarchos 2.3 m telescope,	False	Details
Astrolab IRIS Observatory / SBIG camera	357.087333	50.817222	Astrolab-IRIS_SBIG	68-cm NMPT telescope. Public	False	Details
ASV 1.4 m Milankovic Telescope / Andor iKon-L CCD camera	338.45	43.15	ASV1.4_Andor	The Astronomical Station Vido	False	Details
ATA50 with Apogee Alta U230	318.75611111	39.904752	ATA50_AltaU230	51 cm RC telescope on ASA Dir	False	Details

Add a new Observatory to your list.								
ere you can add a new observatory to your list in two ways.								
ou can choose an observatory from the list of already registered ones.								
your observatory is not yet registered you can create a new entry.								
Dbservatory								
Comment								
Comment								
Add to my list								
Create new Observatory								

Observatory — creating observation no yet in our db

Create a new Observatory.

longer table if fits will be processed

Please fill the form below, check BHTOM manual for details. Your entry has to be then activated by the Administrator.

The sample fits file is necessary for new observatories for verification of the automatic photometric processing. Please refer to the BHTOM Manual or get in touch.

Observatory name

Observatory name

Longitude (West is positive) [deg]

Longitude (West is positive) [deg]

Latitude (North is positive) [deg]

Latitude (North is positive) [deg]

Only instrumental photometry file

Create Observatory

only SExtractor instrumental data will be uploaded

Only instrumental photometry file Sample fits* Choose files Provide one sample fits per filter, clearly labelled. Gain* [electrons/ADU] 2.0 Readout noise* [electrons] Binning* Saturation level* [ADU] 63000 Pixel scale* [arcsec/pixel] Readout speed [ms/pixel] (if not known, pass 9999)* Pixel size [um] 13.5 Approx. limit magnitude in V band* [mag] 18.0 Filters* V,R,I Altitude [m]*

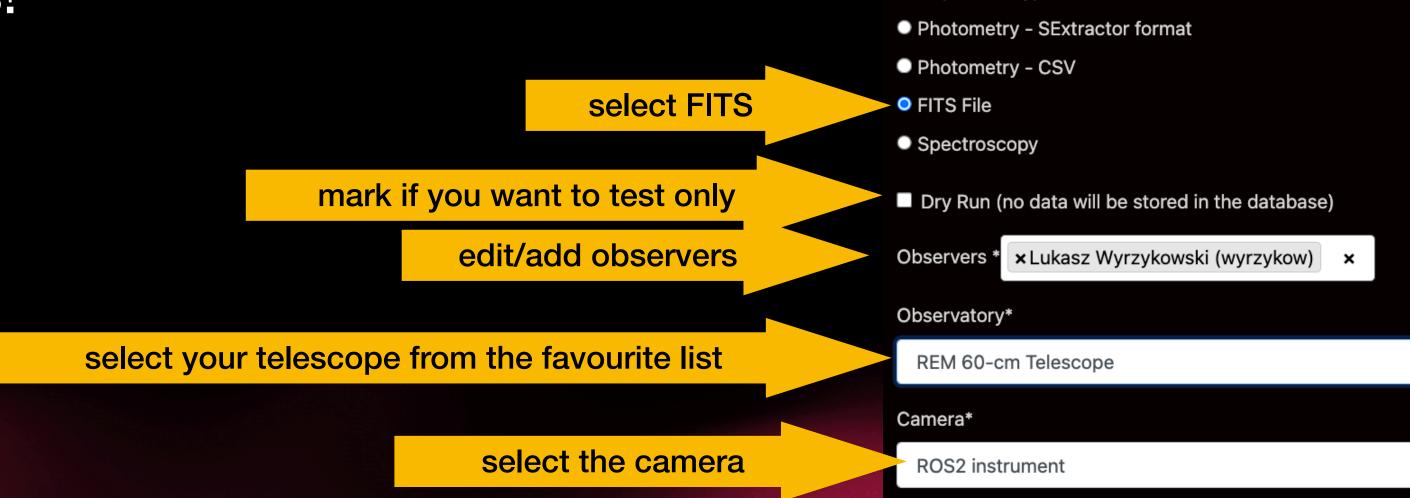
Comments (e.g. hyperlink to the observatory website, camera specifications, telescope info)

Comments (e.g. hyperlink to the observatory website, camera specifications, telescope info)

this will require human acceptance

Create Observatory

pre-requisites:


- bias/dark/flat corrected fits only
- your observatory registered and activated

Gaia24ayd		Photometry Models Spe in target page, find Manage Data Manage Data Manage Groups				
Name	Gaia24ayd	Upload a data product				
Ra,Dec	300.82509 30.65126 20:03:18.022 +30:39:04.536	Here you can upload your photometric and spectroscopic observations for this target. Please refer to the BHTOM manual for details. Example CSV formats for photometry and spectroscopy. Note, we require MJD (Modified Julian Date = JD-2400000.5) in the photometry file!				
Galactic (I,b)	68.012377 -0.211674	SExtractor format is required for instrumental photometry. FITS is not supported for spectra yet. Non-detections are marked with error >= 99.0 (e.g. 99.0, 99.9 etc.)				
Constellation	Cygnus	For photometric FITS processing choose the observatory from the list. You can add a new observatory here.				
Discovered	2024-03-12 13:39:39	You can upload up to 5 files at once.				
Class	Unknown	You can also use a python script for external fits upload, see the BHTOM's API documentation				

upload — uploading fits images

- in GUI only 5 files can be uploaded at once
- use scripts!

Choose a Files

Data product type

Force filter

Comment

Comment

Upload

GaiaSP/any

Choose files No file chosen

Note on filters for standardisation:

- GaiaSP/any is best for most filters, either Johnson-Cousins or Sloan
- if you know your filter, select it
- * if you use only Sloan, select GaiaSP/ugriz
- * if you use only J-C, select GaiaSP/UBVRI
- if you use Gaia filters, select GaiaDR3/any
- if you observe in IR, select 2MASS/any
- if you are still not sure, select Auto

leave GaiaSP/any*

any additional comments, e.g. on the conditions, weather, etc.

upload — uploading SExtractor instrumental photometry

BHTOM2

- in GUI only 5 files can be uploaded at once select Photometry
- use scripts!

mark if you want to test only

MJD of the observation

edit/add observers

select your telescope from the favourite list

select the camera

Note on filters for standardisation:

- * GaiaSP/any is best for most filters, either Johnson-Cousins or Sloan
- * if you know your filter, select it
- * if you use only Sloan, select GaiaSP/ugriz
- * if you use only J-C, select GaiaSP/UBVRI
- * if you use Gaia filters, select GaiaDR3/any
- * if you observe in IR, select 2MASS/any
- * if you are still not sure, select Auto

leave GaiaSP/any*

any additional comments, e.g. on the conditions, weather, etc.

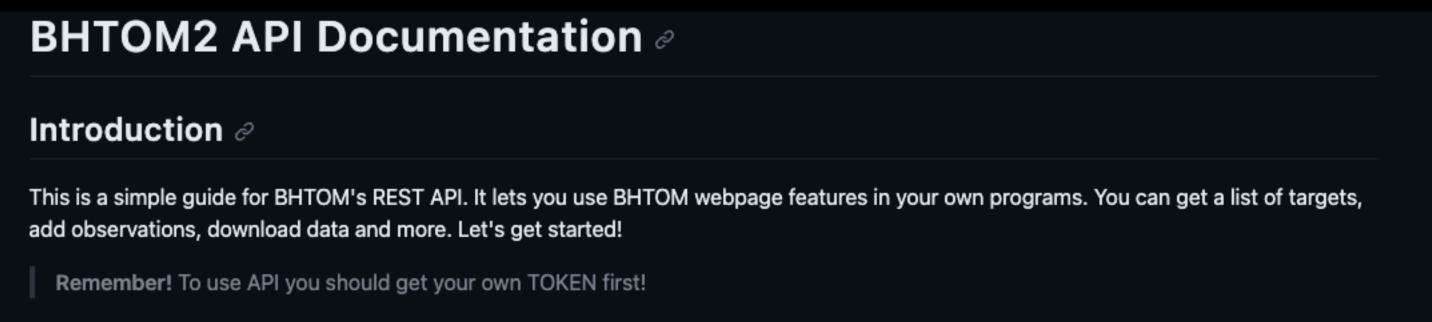
Choose files No file chosen	
Data product type	
OPhotometry - SExtractor format	
Photometry - CSV	
• FITS File	
 Spectroscopy 	
■ Dry Run (no data will be stored in the database)	
MJD OBS *	
MJD OBS *	
Observers * x Lukasz Wyrzykowski (wyrzykow) x	
Observatory*	
REM 60-cm Telescope	\
Camera*	
ROS2 instrument	\
Force filter	
GaiaSP/any	\
Comment	
Comment	
Upload	

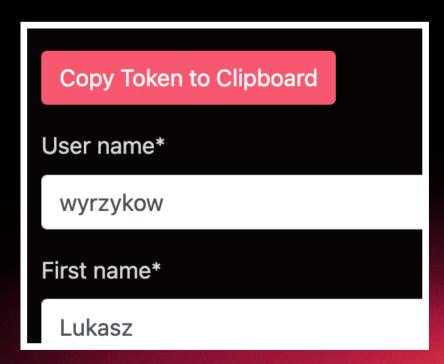
API

https://doc.bhtom.space/

- all functionalities of BHTOM available programmatically!
- upload (fits, dat, spec)
- target list and filtering
- data download
- dataproduct download
- standardisation results
- changing/adding observers

BHTOM2 API Documentation Introduction This is a simple guide for BHTOM's REST API. It lets you use BHTOM webpage features in your own programs. You can get a list of targets, add observations, download data and more. Let's get started! Remember! To use API you should get your own TOKEN first!


API token can be copied from your profile page


API

https://doc.bhtom.space/

- all functionalities of BHTOM available programmatically!
- upload (fits, dat, spec)
- target list and filtering
- data download
- dataproduct download
- standardisation results
- changing/adding observers

API token can be copied from your profile page

BHTOM API Example Notebooks:

https://drive.google.com/drive/folders/1A9Oe1rApyl7 orazo 1oUNVqdzhE-w4M?usp=sharing

https://groups.google.com/g/bhtomtargets open group

BHTOM Targets for 08 April, 2024

Lukasz Wyrzykowski <wyrzykow@gmail.com>

8 Apr 2024, 16:12:21 (5 days ago)

to bhtomtargets@googlegroups.com

Hello,

Greetings from the BHTOM Automated Newsletter!

As of 2024-04-08 14:09:01.478552+00:00, these are the new targets added in the last week with importance greater than 1, sorted by magnitude:

name	ra	dec	mag_last sui	n_separation	classification	d	description
Gaia24bbw	81.371630	39.506760	14.2 65.	.0	Unknown	candidate microlensing event	
Gaia24bbs	270.968180	-28.183980	16.2 10	8.0	Unknown	bulge candidate microlensing event	
Gaia24bau	266.011980	-25.859980	16.7 11:	2.0	Unknown	candidate microlensing event	
Gaia24bay	262.530760	-27.944750	17.0 11	5.0	Unknown	candidate microlensing event	
Gaia24adu	205.400100	43.413980	17.3 129	9.0	Unknown	~1 mag rise in Gaia source coincident with galaxy	
Gaia24bbt	264.611000	-33.329870	17.5 113	3.0	Unknown	bulge candidate microlensing event	
Gaia23dkq	183.716870	-19.030480	17.8 16	2.0	Unknown	Brightening in Gaia source coincident with galaxy 6dFGS gJ121452	2.1-190150
Gaia23dgk	228.359390	27.081950	18.1 13	4.0	Unknown	Brightening in Gaia source coincident with galaxy	
Gaia23bat	242.658540	-35.559640	18.2 13	0.0	Unknown	candidate microlensing event	
Gaia24bcm	253.619790	-50.373170	18.9 Na	ıN	Unknown	candidate microlensing event	
AT 2024fkm	208.285587	35.720493	20.2 13	6.0	Unknown	Astro-COLIBRI target	

In addition, here are some older targets that are currently visible and requested for observations. These targets have an importance greater than 4, a sun separation greater than 70, and a magnitude less than 18. They are also sorted by magnitude.

https://groups.google.com/g/bhtomtargets open group

In addition, here are some older targets that are currently visible and requested for observations. These targets have an importance greater than 4, a sun separation greater than 70, and a magnitude less than 18. They are also sorted by magnitude.

North (dec>0):

	name ra	dec m	ag_last sun_separati	on classification	description
TCrB	239.875676	25.920170 12	2.3 127.0	Nova	recurent nova predicted to explode 2024/2025
8C0716_714	110.472701	71.343434 14	4.0 84.0	QS0	high cadence variability suspected
Gaia24ayd	300.825090	30.651260 14	4.7 74.0	Unknown	bright candidate for microlensing event
Gaia18bwz	174.611270	3.368310 15	5.3 155.0	CV	Known dwarf nova QZ Vir in outburst
Gaia24azc	296.202220	23.630800 15	5.4 79.0	Unknown	bright gal.plane source candidate microlensing event or Be- type outburst
NGC5683-Seyfert	218.718578	48.661870 15	5.5 121.0	AGN	active nucleus of a nearby galaxy for frequent monitoring
SN2024gy	183.963708	13.115589 15	5.7 156.0	SN	classified SN Ia at 5Mpc
ZTF18aarippg	217.566838	23.062372 16	6.1 144.0	QS0	Tick-Tok possibly merging Super Massive Black Hole binary
SN2023ixf	210.910654	54.311674 16	6.8 117.0	SN	Bright supernova in M101
Gaia23dfy	281.922640	9.043970 16	6.8 94.0	Unknown	red gal.plane source candidate microlensing event rises by 0.7 mag
SN 2024elf	264.113343	39.965370 16	6.8 102.0	SN	Astro-COLIBRI target
SN 2024eib	200.350801	23.861445 17	7.0 149.0	SN	Astro-COLIBRI target
Gaia23dgt	204.096070	25.538710 17	7.1 147.0	QS0	Brightening in Gaia source coincident with Seyfert I galaxy
Gaia24acn	298.644780	30.361130 17	7.2 76.0	Unknown	Candidate microlensing event
SDSSJ094533.99+1009	950.1 146.391622	10.163917 17	7.8 127.0	QS0	Long term variable quasar for monitoring

https://groups.google.com/g/bhtomtargets open group

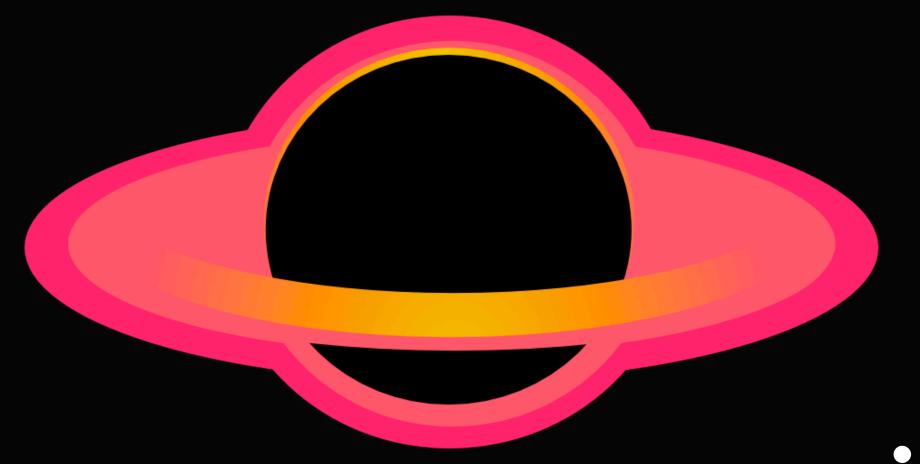
South ((dec<0)) :
---------	---------	------------

Court (uco (o).						
name	ra	dec	mag_last	sun_separation	classification	description
Gaia23ckh	266.770410	-35.991370	13.0	111.0	Symbiotic star	Mira brightens by 0.8 mag, previous event seen
Gaia23cpd	287.536760	-4.720760	13.8	90.0	Microlensing Event	potential long and bright microlensing event
Gaia19dbf	178.699417	-64.491850	14.2	121.0	Unknown	Possibly a YSO
Gaia23dpn	220.154710	-57.762400	14.4	126.0	Microlensing Event	bright red gal.plane source candidate microlensing event rises by 0.8 mag
V4370 Oph	264.987833	-26.461647	15.1	113.0	Nova	Astro-COLIBRI target
Gaia23cyl	266.467690	-42.760060	15.5	110.0	Microlensing Event	microlensing event in the bulge
Gaia23bsf	276.583080	-14.036970	15.8	102.0	Unknown	unknown
AT2024eff	87.924542	-19.218400	16.1	75.0	Unknown	possible nuclear transient, TDE candidate
Gaia23bzg	195.332390	-14.415280	16.3	173.0	QS0	Brightening in known QSO
Gaia24amo	249.148921	-53.749919	16.4	118.0	Unknown	candidate microlensing event, possibly now on the rise
PMNJ0730- 6602	112.706495	-66.038578	16.5	99.0	AGN	IAUZ Target
CTS_C30.10	71.833281	-45.627319	16.8	72.0	QSO	Long term variable quasar for monitoring
Gaia23bsd	273.561870	-22.319870	17.0	105.0	Unknown	very slowly rising object, candidate microlensing or Be or YSO
Gaia23cmf	266.551870	-21.014000	17.1	112.0	Microlensing Event	candidate microlensing event
Gaia23cxu	235.890310	-55.429890	17.1	123.0	Microlensing Event	candidate disk microlensing event
AT2024bgz	146.019850	-4.201358	17.1	129.0	TDE	New TDE, now is approaching the LC peak
SN2013bw	161.718208	-1.390811	17.3	144.0	SN	close to SN2024hw
Gaia24ata	188.027640	-48.157800	17.4	138.0	Unknown	candidate long microlensing event far from the Gal Plane
Gaia23dpi	222.600550	-66.066000	17.6	119.0	Microlensing Event	candidate long microlensing event or Be star
Gaia21cbi	122.889030	-80.519340	17.6	100.0	Unknown	~0.5 mag rise in Gaia, WISE and GALEX source
Gaia23cnm	285.322920	-18.717130	17.6	94.0	Unknown	slow and long rise, possible microlensing or YSO
Gaia23dgf	120.642180	-2.372900	17.8	104.0	TDE	~0.3 mag rise in Gaia source

https://groups.google.com/g/bhtomtargets open group

Last week's targets observed:

serveu.	Last week's targets obse
target_names	camera
I 3C454.3	ASV60_FLI
Δ1/20/3700 Gala19h7h	AsiagoAO-0.67_G4- 16000
Gala24avd ICrB Gala23chd	Flarestar-MPC171_G2- 1600
Gaia23dpn, Gaia23dqt, SN2024gy, Gaia23dau, Gaia24alm	GeoNAO_SXVR-H36
Gaia24ayd, SN 2024eib, NGC5683-Seyfert, 8C0716_714, TCrB, Gaia24acn, ZTF18aarippg, Gaia24aup, Gaia23dau, SN2023ixf	HA068_G2-1600
1C/B SN/U/40V Gala I8DW7 SN/U/3IXT	Kryoneri-1.2_Andor- Zyla
Gaia24ata, Gaia24alk, Gaia23cbf, Gaia23cvm, Gaia24ams, Gaia23cvq, Gaia24amf, Gaia23cme, Gaia23cnu, SN2023utm, Gaia23cuq, Gaia23cpd, Gaia18dif, Gaia23dpi, Gaia23cvl, Gaia23dpd, Gaia23dpn, Gaia23cvx, Gaia24aom, Gaia23dta, Gaia23cxu, Gaia24amo, Gaia24asr, Gaia24amk	LCOGT-CTIO-1m_4K
Gaia23cua, Gaia23cri, Gaia23dau, Gaia23dgt	LCOGT-MCD-1m_4K
SN2024av	LCOGT-MCD- 40cm_SBIG6303
Gaia23dpd, Gaia24ata, Gaia23cuq, Gaia23dpn, Gaia23dta, Gaia23cnu, Gaia24amo, Gaia23cbf, Gaia23cxu, Gaia23dfy, Gaia23dpi, Gaia24asr, Gaia24amk	LCOGT-SAAO-1m_4K
Gaia23cuq, Gaia23dpn, Gaia23cvx, Gaia23dta, Gaia23cvm, Gaia24asr	LCOGT-SS-1m_4K
Gaia23cvq, Gaia23dgt, Gaia23cnu, Gaia23cua, Gaia23cri, Gaia23dau, Gaia23dfy	LCOGT-Teide-1m_4K
SN2024av	LCOGT-Teide- 40cm_SBIG6303
7 TCrB	OAUJ-CDK500_U47
Gaia22bpl, Gaia23dpn, Gaia23dnm, Gaia23cpd, Gaia20fnr, Gaia23dit, Gaia24aeh, Gaia24amo, Gaia21ccu, Gaia24ach	ROAD_QHY600M
TCrB	RRRT_SBIG-STX16803
TCrB, Gaia24ayd, SN2024gy, 8C0716_714	ZAO_G2-1600


https://groups.google.com/g/bhtomtargets open group

Last week's fits uploads score (sorted by count)

observatory-user count

	,
879	Franz-Josef Hambsch (ROAD_QHY600M)
168	Charles Galdies (ZAO_G2-1600)
103	Uliana Pylypenko (LCOGT-SAAO-1m_4K)
89	Nada Ihanec (LCOGT-CTIO-1m_4K)
87	Uliana Pylypenko (LCOGT-CTIO-1m_4K)
58	Nada Ihanec (LCOGT-SAAO-1m_4K)
47	Staszek Zola (OAUJ-CDK500_U47)
40	Alexios Liakos (Kryoneri-1.2_Andor-Zyla)
37	Jan Kåre Trandem Qvam (HAO68_G2-1600)
35	Nada Ihanec (LCOGT-Teide-1m_4K)
32	Nada Ihanec (LCOGT-SS-1m_4K)
28	Teimuraz Kvernadze (GeoNAO_SXVR-H36)
26	Uliana Pylypenko (LCOGT-Teide-1m_4K)
22	Stephen M. Brincat (Flarestar-MPC171_G2-1600)
15	Staszek Zola (RRRT_SBIG-STX16803)
15	Tom Killestein (LCOGT-Teide-40cm_SBIG6303)
13	Uliana Pylypenko (LCOGT-MCD-1m_4K)
6	Nada Ihanec (LCOGT-MCD-1m_4K)
6	Rachel Street (LCOGT-SAAO-1m_4K)
5	Rachel Street (LCOGT-Teide-1m_4K)
5	Rachel Street (LCOGT-CTIO-1m_4K)
3	Tom Killestein (LCOGT-MCD-40cm_SBIG6303)
2	Andrea Reguitti (AsiagoAO-0.67_G4-16000)
2	Uliana Pylypenko (LCOGT-SS-1m_4K)
1	Rachel Street (LCOGT-MCD-1m_4K)
1	Przemyslaw J. Mikolajczyk (ASV60_FLI)

enjoy bhtom!

BHTOM.SPACE

BH-TOM2.ASTROLABS.PL

SLACK.

BHTOM.SPACE

